Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Lingxiao Ma*†♦, Zhiqiang Xie*‡♦, Zhi Yang†, Jilong Xue♦, Youshan Miao♦,
Wei Cui♦, Wenxiang Hu♦, Fan Yang♦, Lintao Zhang♦, Lidong Zhou♦

† Peking University
‡ ShanghaiTech University
♦ Microsoft Research

* Equal contribution
The Rise of Deep Learning

Self-driving
Personal Assistant
Search Engine
Art
Recommendation

Image Recognition
Speech Recognition
Natural Language
Generative Model
Graph Model
DL Frameworks Bridge the Gap of Models and Hardware

Deep Neural Network (DNN) Models

Modern Accelerators

[Barret Zoph, et.al., CVPR’18]

[Chuxu Zhang, et.al., KDD’19]

[Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/]
Existing Approach

- DNN is usually modeled as a dataflow graph (DFG)
- DFG naturally contains two levels of parallelism

Dataflow Graph

Inter-op parallelism

Intra-op parallelism independent homogeneous
Existing Approach: Two-Layer Architecture

- **DFG scheduler** exploits inter-op parallelism
 - Emit operators that are ready for execution
 - Operators are treated as *opaque library functions*

- **Hardware scheduler** exploits intra-op parallelism
 - Map intra-op computation to parallel execution units (EUs)
Limitations of Existing Two-Layer Architecture

- Two-layer architecture works well when:
 - Schedule overhead is negligible
 - Intra-op parallelism can saturate all EUs

- However, this is often not the case in practice
 - Accelerators are becoming more and more powerful
 - P100 (9.3 Tflops) -> RTX 3090 (35.6 Tflops)

- Low GPU utilization
 - 2% ~ 62% utilization

- High operator scheduling overheads
 - 38% ~ 65% non-kernel time

All data are reported on the inference task (BS=1) of 6 models on a V100 GPU (more details in paper).
Limitations of Existing Two-Layer Architecture

- Overlook the subtle interplay of inter- and intra-op parallelism
Rammer

- Key idea: manage the scheduling of \textit{inter- and intra- operator together}
Rammer

- Challenge 1: operators are opaque functions and do not expose fine-grained intra-op parallelism
Rammer

- Challenge 1: operators are opaque functions and do not expose fine-grained intra-op parallelism

- Solution: \textit{rTask-Operator (rOperator) abstraction}
 - Expose fine-grained intra-op parallelism
 - A group of \textit{independent, homogeneous} rTasks
 - rTask is the \textit{minimum computation unit} on an EU
Rammer

- Challenge 2: accelerators (e.g., GPU) do not expose interfaces for intra-op scheduling

- Solution: virtualized parallel device abstraction
 - Expose hardwares’ fine-grained scheduling capability
 - Decouple scheduling from hardware devices
 - Bypass the hardware scheduler
Rammer

- Challenge 3: fine-grained scheduling could incur even more scheduling overheads

- Observation: **predictability of DNN computation**
 - Most DNN’s DFG is available at the **compile time**
 - Operators exhibit **deterministic** performance

The profiled kernel time of all the operators in ResNeXt model. Each data point ran 1,000 times.
Rammer

- Challenge 3: fine-grained scheduling could incur even more runtime overheads

- Observation: **predictability of DNN computation**
 - Most DNN’s DFG is available at the **compile time**
 - Operators exhibit **deterministic** performance

- Solution: generate execution plan (rProgram) at **compile time**
 - **Mechanism**: scheduling interfaces & profiler
 - **Policy**: wavefront scheduling policy
Rammer

- Wavefront scheduling policy
 - Each rOperator has different kernel implementations
 - Partition DFG into waves by BFS
 - Select "fastest" kernels if current wave does not saturate all EUs
 - Select "resource-efficient" kernels for inter-/intra-op interplay if current wave saturates all EUs
Rammer

- Wavefront scheduling policy
 - Each rOperator has different kernel implementations
 - Partition DFG into waves by BFS
 - Select *fastest* kernels if current wave does not saturate all EUs
 - Select *resource-efficient* kernels for inter-/intra-op interplay if current wave saturates all EUs
Rammer

- Wavefront scheduling policy
 - Each rOperator has different kernel implementations
 - Partition DFG into waves by BFS
 - Select *fastest* kernels if current wave does not saturate all EUs
 - Select *resource-efficient* kernels for inter-/intra-op interplay if current wave saturates all EUs
Rammer

- Wavefront scheduling policy
 - Each rOperator has different kernel implementations
 - Partition DFG into waves by BFS
 - Select \textit{fastest} kernels if current wave does not saturate all EUs
 - Select \textit{resource-efficient} kernels for inter-/intra-op interplay if current wave saturates all EUs
Case Study: LSTM-TC-BS4

Baseline: two-layer architecture with compiler optimizations (e.g., kernel fusion, kernel tuning)
+ co-schedule (fastest kernels): operator co-scheduling on fastest kernels (same kernels as Baseline)
+ interplay: operator co-scheduling with interplay of inter-/intra- operator parallelism

All data are reported on the inference task on a V100 GPU (more details and evaluation in paper).
End-to-end Performance on CUDA GPU

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks
End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)
- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)
- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)
- up to 6.46x speedup over TVM-0.7 (with AutoTVM) (SOTA DL compiler)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
End-to-end Performance on CUDA GPU

- up to **33.94x** speedup over TensorFlow-1.15.2 (SOTA DL framework)
- up to **20.12x** speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)
- up to **6.46x** speedup over TVM-0.7 (with AutoTVM) (SOTA DL compiler)
- up to **3.09x** speedup over TensorRT-7.0 (SOTA vendor optimized proprietary library)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
- The average GPU utilization of TensorFlow is only **20.3%**
- The average GPU utilization of TensorFlow is only 20.3%
- Rammer can improve the average GPU utilization by 4.32x

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
The average GPU utilization of TensorFlow is only 20.3%.

Rammer can improve the average GPU utilization by 4.32x.

Compared to RammerBase, Rammer’s scheduling by itself can improve the utilization by 1.61x.

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
Scheduling Overhead

- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
Scheduling Overhead

- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow
- Rammer can further reduce avg. overhead to 0.37 ms over RammerBase

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
End-to-end Performance on AMD GPU

- **13.95x** speedup over TensorFlow-1.15.2 on average (SOTA DL framework)
- **5.36x** speedup over TVM-0.7 on average (with AutoTVM) (SOTA DL compiler)
End-to-end Performance on GraphCore IPU

Our preliminary implementation shows:
- up to **5.37x** performance improvement compared with RammerBase
Rammer Open Source Implementation

https://github.com/microsoft/nnfusion

- 52K lines of C++ code
- Support TensorFlow, ONNX, and PyTorch (TorchScript) as frontends
- Support NVIDIA GPU, AMD GPU and Graphcore IPU as backends

- More details in paper:
 - Implementation on CUDA GPU
 - Implementation on AMD ROCm GPU
 - Implementation on Graphcore IPU
Conclusion

- Rammer: holistic approach to manage the parallelism in DNN for scheduling

- Hardware neutral solution
 - *rTask-Operator Abstraction*: expose fine-grained intra-operator parallelism
 - *Virtualized Parallel Device*: expose hardwares’ fine-grained scheduling capability
Thank you!

https://github.com/microsoft/nnfusion

Contact: NNFusion Team (nnfusion-team@microsoft.com)