PANIC: A High-Performance Programmable NIC for Multi-tenant Networks

OSDI 2020

Jiaxin Lin¹, Kiran Patel², Brent E. Stephens², Anirudh Sivaraman³ and Aditya Akella¹
SmartNIC and Multi Tenancy

• SmartNICs can help drive increasing network line-rates (100Gbps+) by offloading applications or cloud services

• In the multi-tenant environment, to get benefits from the SmartNIC, servers may want to run multiple offloads on the SmartNIC.
SmartNIC and Multi Tenancy

- SmartNICs can help drive increasing network line-rates (100Gbps+) by offloading applications or cloud services.

- In the multi-tenant environment, to get benefits from the SmartNIC, servers may want to run multiple offloads on the SmartNIC.

Problem: None of the current SmartNICs are good at running multiple tenants’ offloads at the same time.
What are the requirements for a SmartNIC in a multi-tenant environment?
Requirements # 1 Generality

- **Generality**: Different tenants on the host may require different types of offloads.
 - Both ASIC offload and CPU core should be supported
 - Offload may have below line rate/variable performance
Requirements # 2 Flexible Chaining

- **Flexible Chaining:**
 - Different tenants will specify their own chains of offloads.
 - NIC should support sending packets through offloads in any order.
Requirements # 3 Isolation
4 Performance

• **Isolation:**
 • SmartNIC should provide performance isolation between competing tenants.

• **Performance:**
 • SmartNIC should provide high throughput for line-rate offloads.
 • SmartNIC should not incur additional latency for low latency offload.

![Diagram showing Isolation and Performance](image-url)
Motivation: Build a programmable NIC that meets all these requirements!
Existing NIC Design Overview

Pipeline of Offloads NIC
- Chaining: X
- Generality: X
- Isolation: X
- Performance: ✓

Manycore NIC
- Chaining: ✓
- Generality: ✓
- Isolation: X
- Performance: X
Pipeline Design NIC

Chaining: X
Generality: X
Performance: ✓
Isolation: X
Pipeline Design NIC

- Chaining: X
- Generality: X
- Performance: ✓
- Isolation: X

Offload 1 → ... → Offload N → to CPU
Pipeline Design NIC

Chaining: X
Generality: X
Performance: ✓
Isolation: X
Pipeline Design NIC

- **Chaining:** ✗
- **Generality:** ✗
- **Performance:** ✔
- **Isolation:** ✗
Pipeline Design NIC

Chaining: X
Generality: X
Performance: ✓
Isolation: X
Pipeline Design NIC

Problems:

- Chaining: static chaining.
Pipeline Design NIC

Chaining: X
Generality: X
Performance: ✓
Isolation: X

Problems:

- Chaining: static chaining.
- Generality: non-line rate offload will cause Head-of-Line Blocking (HOL).
- Isolation: poor Isolation when HOL happens.
Pipeline Design NIC

Problems:

- Chaining: static chaining.
- Generality: non-line rate offload will cause Head-of-Line Blocking (HOL).
- Isolation: poor Isolation when HOL happens.
Pipeline Design NIC

Problems:

- Chaining: static chaining.
- Generality: non-line rate offload will cause Head-of-Line Blocking (HOL).
- Isolation: poor Isolation when HOL happens.

Chaining: ✗
Generality: ✗
Performance: ✓
Isolation: ✗
Manycore NIC

Problems:

- Isolation: does not provide explicit supports for isolation.
- Performance: hard to saturate line-rate and high latency.
The solution is --- PANIC!
A new architecture for programmable NICs that supports full-line rate (> 100G) offload chaining and multi-tenant traffic isolation
PANIC Design Overview

Chaining: ✓
Generality: ✓
Isolation: ✓
Performance: ✓

PANIC Components:

1. **Reconfigurable-Match-Action Pipeline**: Parse packets and determine offload chain
2. **Central Scheduler**: enforce isolation policies and schedule packets
3. **Independent Compute Unit**: Support hardware accelerator or CPU core
4. **High-throughput Switching Fabric**: Interconnects different hardware resources.
Life-Cycle of a Packet in PANIC

Packet Buffer
On-chip Memory

Scheduler
- HW Priority Queue (PIFO) Array
- Credit Manager

Switching Fabric
- DMA Engine
- PCIe Gen4 x8
- Service A
- Service B
- Service A

RMT
- port0
- port1
- MAC PHY
- MAC PHY

QSFP28

Network Packet
If from WAN?
If compressed?

To Host
Life-Cycle of a Packet in PANIC

- Packet Buffer
- On-chip Memory
- Scheduler
 - HW Priority Queue (PIFO) Array
 - Credit Manager
- Switching Fabric
- DMA Engine
- PCIe Gen4 x8
- Service A
- Service B
- Service A
- Network Packet
- QSFP28
- QSFP28
- If from WAN?
- If compressed?
- To Host
Life-Cycle of a Packet in PANIC

Packet Buffer
- On-chip Memory
 - HW Priority Queue (PIFO) Array
 - Credit Manager

Scheduler
- PK_LEN
- BUF_ADDR
- CHAIN_LEN: 2
- CHAIN: A -> B

Switching Fabric
- PCIe Gen4 x8
- DMA Engine
- RMT
- MAC PHY
- MAC PHY

Service A
- CU 1
- CU 2
- CU 3

Service B

Network Packet
- If from WAN?
- If compressed?

Scheduler
- Scheduler
- If from WAN?
- If compressed?
Life-Cycle of a Packet in PANIC

Packet Buffer

On-chip Memory

Scheduler

HW Priority Queue (PIFO) Array

Credit Manager

Switching Fabric

PCIe Gen4 x8

DMA Engine

Service A

Service B

Service A

Network Packet

Packet: PK_LEN | BUF_ADDR | CHAIN_LEN: 2 | CHAIN: A -> B
0 | 16 | 32 | 36

Variable

If from WAN?

If compressed?

To Host

If Service A

If Service B
Life-Cycle of a Packet in PANIC

Packet Buffer
- On-chip Memory
- HW Priority Queue (PIFO) Array
- Credit Manager

Switching Fabric
- DMA Engine
- PCIe Gen4 x8

Scheduler
- PK_LEN
- BUF_ADDR
- CHAIN_LEN: 2
- CHAIN: A -> B

Service A
- CU 1

Service B
- CU 2

Service A
- CU 3

Network Packet
- If from WAN?
- If compressed?

To Host
Life-Cycle of a Packet in PANIC
Life-Cycle of a Packet in PANIC
Life-Cycle of a Packet in PANIC

Packet Buffer
- On-chip Memory

Scheduler
- HW Priority Queue (PIFO) Array
- Credit Manager

Switching Fabric
- DMA Engine
- PCIe Gen4 x8

Network Packet
- QSFP28 port0
- QSFP28 port1

Service A
- CU 1
- CU 3

Service B
- Service A

PK_LEN
- 0
- BUF_ADDR
- 16

CHAIN_LEN: 2
- 32

CHAIN: A -> B
- 36
- variable

To Host
- If from WAN?
- If compressed?
Life-Cycle of a Packet in PANIC

Packet Buffer

On-chip Memory

Scheduler

HW Priority Queue (PIFO) Array

Credit Manager

Switching Fabric

Port 0

Port 1

DMA

CU 1

CU 2

CU 3

Service A

Service B

Service A

Network Packet

If from WAN?

If compressed?

To Host

PK_LEN

BUF_ADDR

CHAIN_LEN: 2

CHAIN: A->B

0 16 32 36 variable

PCIe Gen4 x8

QSFP28

QSFP28

MAC PHY

MAC PHY

Variable

Variable

Variable
Life-Cycle of a Packet in PANIC

Packet Buffer
- On-chip Memory
- HW Priority Queue (PIFO) Array
- Credit Manager

Switching Fabric
- DMA Engine
- PCIe Gen4 x8

Scheduler
- PK_LEN
- BUF_ADDR
- CHAIN_LEN: 2
- CHAIN: A -> B

Switching Fabric
- CU 1
- CU 2
- CU 3

Network Packet
- QSFP28
- QSFP28

Service A
- If from WAN?
- If compressed?

Service B
- To Host
RMT Pipeline

• Reconfigurable Match Action Table
 • Programmers can specify the set of fields in a packet to match on.
 • Programmers compose the actions to modify packet fields.
• In PANIC, users program the match action tables:
 • The service chain for each tenant’s traffic.
 • The isolation policy and priority number for each tenant’s traffic.
• Action stage, RMT generates a PANIC descriptor for every packet

<table>
<thead>
<tr>
<th>Traffic ID</th>
<th>Service Chain</th>
<th><Isolation Policy, Priority (Weight)></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A -> B</td>
<td><Weighted Fair Queuing, 3></td>
</tr>
<tr>
<td>2</td>
<td>A -> C</td>
<td><Weighted Fair Queuing, 2></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

PK_LEN BUF_ADDR CHAIN_LEN: 2 CHAIN: A -> B SCHE_METADATA: <WFQ, 3>
PANIC Scheduler:

Goal #1: Achieve high-performance chaining

Goal #2: Load-balance packets across parallel compute units in a service

Goal #3: Performance isolation across tenants

Goal #4: Buffer isolation across tenants
Problem: Chaining and Load Balancing

Goal #1: Achieve high-performance chaining

Goal #2: Load-balance packets across parallel compute units in a service.

- **Pull-based scheduling**
 - Achieve Load balancing!
 - Every hop goes back to scheduler; cannot achieve high performance chaining!

- **Push-based scheduling**
 - Low latency chaining!
 - Lead to load imbalance!
 - Lead to packet dropping!

Solution: Hybrid push-pull scheduling
PANIC Scheduler: Hybrid Push Pull Scheduling

- **Hybrid Push Pull scheduling:**
 - Compute units can either **pull** packet from the scheduler or **accept the pushed** packet from other units.
 - According to CUs’ load, switches between push pull scheduling.
 - **During Low Load:** the packet is pushed to all the units in a chain.
 - **During High Load:** the packet is sent back to the scheduler, until it can be pulled by an idle CU.
 - **Detour Routing:** In push scheduling, if the downstream is busy due to a burst.
PANIC Scheduler: Performance Isolation

Goal #3: Priority scheduling and performance isolation

- **PIFO array for performance Isolation:**
 - PIFO (*PUSH IN, FIRST OUT Queue*) runs like the hardware priority queue. One service has one logic PIFO queue.
 - Packet descriptors is sorted according to the packet rank in per-service PIFO.
PANIC Scheduler: Performance Isolation

Goal #3: Priority scheduling and performance isolation

- **PIFO array for performance isolation:**
 - PIFO (*PUSH IN, FIRST OUT Queue*) runs like the hardware priority queue. One service has one logic PIFO queue.
 - Packet descriptors is sorted according to the packet rank in per-service PIFO.

<table>
<thead>
<tr>
<th>PK_LEN</th>
<th>BUF_ADDR</th>
<th>CHAIN_LEN: 2</th>
<th>CHAIN: A -> B</th>
<th>SCHE_METADATA: <Strict, High></th>
</tr>
</thead>
</table>

Packet Buffer

Isolation Policy: Strict Priority

Service A

- Tenant 1: 10Gbps Priority = 0 (Highest)

Service B

- Tenant 2: 90Gbps Priority = 10 (Low)
PANIC Scheduler: Performance Isolation

Goal #3: Priority scheduling and performance isolation

- **PIFO array for performance isolation:**
 - PIFO (PUSH IN, FIRST OUT Queue) runs like the hardware priority queue. One service has one logic PIFO queue.
 - Packet descriptors is sorted according to the packet rank in per-service PIFO.
 - Support different isolation policy
 - (WFQ, LSTF, Rate Limiting...)

<table>
<thead>
<tr>
<th>PK_LEN</th>
<th>BUF_ADDR</th>
<th>CHAIN_LEN: 2</th>
<th>CHAIN: A -> B</th>
<th>SCHE_METADATA: <Strict, High></th>
</tr>
</thead>
</table>
Problem: Buffer Isolation

Goal #4: Ensure buffer isolation across tenants

• Naïve Packet dropping method: drop the newest income packet when the buffer is full
 • No Isolation! A high-volume low-priority flow can lead to packet loss for a high priority flow.
PANIC Scheduler: Prioritized Dropping

- **Prioritized Dropping**: drop the lowest rank packet when the buffer is almost full.
 - Extend PIFO’s interface to allow it to support *PUSH IN, FIRST OUT, REMOVE LAST*
 - **Isolation!** PANIC can ensure the high priority packet enters buffer and receive service.
PANIC Scheduler: Prioritized Dropping

- **Prioritized Dropping**: drop the lowest rank packet when the buffer is almost full.
 - Extend PIFO’s interface to allow it to support *PUSH IN, FIRST OUT, REMOVE LAST*
 - **Isolation!** PANIC can ensure the high priority packet enters buffer and receive service.
PANIC Scheduler: Prioritized Dropping

- **Prioritized Dropping**: drop the lowest rank packet when the buffer is almost full.
 - Extend PIFO’s interface to allow it to support *PUSH IN, FIRST OUT, REMOVE LAST*
 - **Isolation!** PANIC can ensure the high priority packet enters buffer and receive service.
PANIC Scheduler: Prioritized Dropping

- **Prioritized Dropping**: drop the lowest rank packet when the buffer is almost full.
 - Extend PIFO’s interface to allow it to support **PUSH IN, FIRST OUT, REMOVE LAST**
 - **Isolation!** PANIC can ensure the high priority packet enters buffer and receive service.
Compute Unit

• Compute Unit can either be a CPU core or a hardware accelerator, variable/non-line rate
• Traffic Manager handles communication with scheduler
 o Offloads Engine can be designed without needing to understand other PANIC components.
Switching Fabric

• Providing offload chaining for an arbitrary chain.
• The switching fabric is non-blocking and high-throughput
 • Each interconnect port should send and receive at full line-rate (> 100Gbps)
 • A crossbar with a bit width of 512 bits at 250 MHz frequency.
 • Scalability? NoC topology is selected according to the CU number.
PANIC Implementation

• 100G FPGA prototype in ADM-PCIe-9V3 accelerator
• ~6K lines of Verilog code
• Prototype Components:
 o A lightweight RMT pipeline
 o 8 * 8 full connected crossbar (512 bit width @ 250MHz)
 o Dual-port central scheduler (512 bit width @ 250MHz)
 ▪ PIFO block @ 125MHz
 o Compute Units
 ▪ AES-256-CTR encryption unit (24Gbps @ 250Mhz)
 ▪ SHA-3-512 hash unit (32Gbps @ 150Mhz)
 ▪ An RISC-V core unit (5-stage pipeline @ 250MHz)
Can PANIC achieve high throughput and low latency under different chaining models?

Can PANIC isolate traffic using different isolation policies?

What is the hardware resource consumption of PANIC?
PANIC Evaluation

Can PANIC achieve high throughput and low latency under different chaining models?

Chaining Model 1: Pipelined Chain

Setup:
- Use delay unit emulate real compute unit.
- Single line-rate delay unit for each service.
- Each delay unit initially has 8 credits

PANIC achieves 100G throughput and low latency chaining!
Can PANIC isolate traffic?

End-to-End experiment

<table>
<thead>
<tr>
<th>Traffic Group 1</th>
<th>Traffic Group 2</th>
<th>Traffic Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA (S1,S2)</td>
<td>AES (A1,A2)</td>
<td>PANIC</td>
</tr>
</tbody>
</table>

Setup:
- The sender server generate network traffic using different traffic pattern.
- 2 SHA engines and 2 AES engines are attached.
- Isolation Policy: weighted fair queuing.

PANIC can isolate traffic using different isolation policy!
PANIC Evaluation

What is the hardware resource consumption of PANIC?

- Resource Usage in ADM-PCIE-9V3
 - Most of the on-chip logic resources in PANIC is occupied by crossbar and PIFO.
 - In total, PANIC only cost ~11% LUT resource and ~9% BRAM resource.

<table>
<thead>
<tr>
<th>Module</th>
<th>Setting</th>
<th>LUT (%)</th>
<th>BRAM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossbar</td>
<td>8 ports</td>
<td>5.5</td>
<td>0.00</td>
</tr>
<tr>
<td>Scheduler (PIFO)</td>
<td>PIFO size = 256</td>
<td>5.18 (4.9)</td>
<td>0.07 (0.01)</td>
</tr>
<tr>
<td>Packet Buffer</td>
<td>256 KB</td>
<td>0.16</td>
<td>8.94</td>
</tr>
<tr>
<td>Simple RMT</td>
<td>/</td>
<td>0.27</td>
<td>0.00</td>
</tr>
</tbody>
</table>

PANIC can easily fit on any middle-end FPGA without utilization or timing issues.
Conclusion

• PANIC is a full line-rate programmable NIC design that overcomes current NICs limitation in multi-tenant environments.

Thank you!