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Persistent Memory (PM)

➢ Non-volatile memory as PM is expected to replace 

or complement DRAM as main memory

– Non-volatility, low power, large capacity 

PCM ReRAM DRAM

Read (ns) 20-70 20-50 10

Write (ns) 150-220 70-140 10

Non-volatility √ √ ×

Standby Power ~0 ~0 High

Density (Gb/cm2) 13.5 24.5 9.1

PCM

ReRAM

K. Suzuki and S. Swanson. “A Survey of Trends in Non-Volatile Memory Technologies: 2000-2014”, IMW 2015.

C. Xu et al. “Overcoming the Challenges of Crossbar Resistive Memory Architectures”, HPCA, 2015.
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Index Structures in DRAM vs PM

➢ Index structures are critical for memory&storage systems

➢ Traditional indexing techniques originally designed for 

DRAM become inefficient in PM

– Hardware limitations of NVM

• Limited cell endurance

• Asymmetric read/write latency and energy

• Write optimization matters

– The requirement of data consistency

• Data are persistently stored in PM

• Crash consistency on system failures 
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Tree-based vs Hashing Index Structures

➢ Tree-based index structures
– Pros: good for range query

– Cons:  O(log(n)) time complexity 

for point query

– Ones for PM have been widely 

studied

• CDDS B-tree [FAST’11]

• NV-Tree [FAST’15]

• wB+-Tree [VLDB’15]

• FP-Tree [SIGMOD’16]

• WORT [FAST’17]

• FAST&FAIR [FAST’18]
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➢ Hashing index structures
– Pros: constant time complexity for 

point query

– Cons: do not support range query

– Widely used in main memory

• Main memory databases

• In-memory key-value stores, e.g., 

Memcached and Redis

– When maintained in PM, multiple 

non-trivial challenges exist 

• Rarely touched by existing work
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Challenges of Hashing Indexes for PM

① High overhead for consistency guarantee

– Ordering memory writes

• Cache line flush and memory fence instructions

– Avoiding partial updates for non-atomic writes

• Logging or copy-on-write (CoW) mechanisms

CPU Memory Bus

Volatile caches Non-volatile memory

8-byte width
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Challenges of Hashing Indexes for PM

① High overhead for consistency guarantee

② Performance degradation for reducing writes

– Hashing schemes for DRAM usually cause many extra 

writes for dealing with hash collisions [INFLOW’15, MSST’17]

– Write-friendly hashing schemes reduce writes but at the 

cost of decreasing access performance

• PCM-friendly hash table (PFHT) [INFLOW’15]

• Path hashing [MSST’17]
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Challenges of Hashing Indexes for PM

① High overhead for consistency guarantee

② Performance degradation for reducing writes

③ Cost inefficiency for resizing hash table

− Double the table size and iteratively rehash all items

− Take O(N) time to complete

− N insertions with cache line flushes & memory fences 

8

Old Hash Table New Hash Table

Rehash all items



Existing Hashing Index Schemes for PM

Bucketized

Cuckoo (BCH)

PFHT1 Path 

Hashing2

Memory efficiency √ √ √

Search √ -- --

Deletion √ -- --

Insertion × -- --

NVM writes × √ √

Resizing × × ×

Consistency × × ×

[1] B. Debnath et al. “Revisiting hash table design for phase change memory”, INFLOW, 2015.

[2] P. Zuo and Y. Hua. “A write-friendly hashing scheme for non-volatile memory systems”, MSST, 2017.

(“×”: bad,     “√”:  good , “--”:  moderate)
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Existing Hashing Index Schemes for PM

Bucketized

Cuckoo (BCH)

PFHT1 Path 

Hashing2

Level 

Hashing

Memory efficiency √ √ √ √

Search √ -- -- √

Deletion √ -- -- √

Insertion × -- -- √

NVM writes × √ √ √

Resizing × × × √

Consistency × × × √

[1] B. Debnath et al. “Revisiting hash table design for phase change memory”, INFLOW, 2015.

[2] P. Zuo and Y. Hua. “A write-friendly hashing scheme for non-volatile memory systems”, MSST, 2017.

(“×”: bad,     “√”:  good , “--”:  moderate)
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Level Hashing

  

x
0 1 2 3 4 5 N-1N-2N-3N-4

TL:

BL:

One movement

One movement

Write-optimized & High-performance Hash Table Structure

Cost-efficient 

In-place Resizing Scheme 

Low-overhead Consistency 

Guarantee Scheme

Resizing 

support

Consistency 

support
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Write-optimized Hash Table Structure

① Multiple slots per bucket

② Two hash locations for each key

③ Sharing-based two-level structure

④ At most one movement for each 

successful insertion
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Write-optimized Hash Table Structure

x

  
0 1 2 3 4 5 N-1N-2N-3N-4

TL:

BL:

One movement

One movement

➢ Write-optimized: only 1.2% of insertions incur one movement

➢ High-performance: constant-scale time complexity for all operations

➢ Memory-efficient: achieve high load factor by evenly distributing items 
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Cost-efficient In-place Resizing

➢ Put a new level on top of the old hash table and 

only rehash items in the old bottom level

  

TL:

BL:

0 1 2 3 N-1N-2
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Cost-efficient In-place Resizing

➢ Put a new level on top of the old hash table and 

only rehash items in the old bottom level

  

2 3 4 5 6 7 2N-22N-32N-40 1 2N-1

TL:

  

BL:

IL:

(the interim level )

Rehashing
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Cost-efficient In-place Resizing

➢ Put a new level on top of the old hash table and 

only rehash items in the old bottom level

  

2 3 4 5 6 7 2N-22N-32N-40 1 2N-1

TL:
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Cost-efficient In-place Resizing

➢ Put a new level on top of the old hash table and 

only rehash items in the old bottom level
– The new hash table is exactly double size of the old one

– Only 1/3 buckets (i.e., the old bottom level) are rehashed

  

2 3 4 5 6 7 2N-22N-32N-40 1 2N-1

TL:

BL:
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Low-overhead Consistency Guarantee

➢ A token associated with each slot in the open-

addressing hash tables 

– Indicate whether the slot is empty 

– A token is 1 bit, e.g., “1” for non-empty, “0” for empty

KV1KV00011

Tokens

A bucket:

Slots 24



Low-overhead Consistency Guarantee

➢ A token associated with each slot in the open-

addressing hash tables 

– Indicate whether the slot is empty 

– A token is 1 bit, e.g., “1” for non-empty, “0” for empty

➢ Modifying the token area only needs an atomic write

– Leveraging the token to perform log-free operations

KV1KV00011

Tokens Slots

A bucket:
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Log-free Deletion

➢ Delete an existing item

KV1KV00011

Delete
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Log-free Deletion

➢ Delete an existing item

KV1KV00011

Delete

KV1KV00001

Modify the token in an 

atomic write
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Log-free Deletion

➢ Delete an existing item

KV1KV00011

Delete

KV1KV00001

Modify the token in an 

atomic write

➢ Log-free insertion and log-free resizing

– Please find them in our paper
28



Consistency Guarantee for Update

➢ If directly update an existing 

key-value item in place

– Inconsistency on system failures

KV1KV00011

Update
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Consistency Guarantee for Update

➢ If directly update an existing 

key-value item in place

– Inconsistency on system failures

➢ A straightforward solution is     

to use logging 
KV1KV00011

Update

Expensive!
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Opportunistic Log-free Update

➢ Our scheme: check whether there is an empty slot in the bucket 

storing the old item

– Yes: log-free update

– No: using logging KV1KV00011

KV1’KV1KV00011

KV1’KV1KV00101

Update

① Write KV1’ in an empty slot

②Modify the two tokens in 

an atomic write
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Opportunistic Log-free Update

➢ Our scheme: check whether there is an empty slot in the bucket 

storing the old item

– Yes: log-free update

– No: using logging KV1KV00011

KV1’KV1KV00011

KV1’KV1KV00101

Update

① Write KV1’ in an empty slot

②Modify the two tokens in 

an atomic write
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Performance Evaluation

➢ Both in DRAM and simulated PM platforms

– Quartz (Hewlett Packard)

• A DRAM-based performance emulator for PM

➢ Comparisons
– Bucketized cuckoo hashing (BCH) [NSDI’13]

– PCM-friendly hash table (PFHT) [INFLOW’15]

– Path hashing [MSST’17]

– In PM, implement their persistent versions using our 

proposed log-free consistency guarantee schemes
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Insertion Latency

➢ Level hashing has the best insertion performance in both DRAM and NVM 
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Update Latency

➢ Opportunistic log-free update scheme reduces the update latency by 15%∼
52%, i.e., speeding up the updates by 1.2×− 2.1×
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Search Latency

➢ The search latency of level hashing is close to that of BCH, which is much 

lower than PFHT and path hashing
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Resizing Time

➢ Level hashing reduces the resizing time by about 76%, i.e., speeding up 

the resizing by 4.3×
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Concurrent Throughput

➢ Concurrent level hashing:

Support multiple-reader multiple-

writer concurrency via simply 

using fine-grained locking

➢ Concurrent level hashing has 

1.6×− 2.1× higher throughput 

than libcuckoo1, due to locking 
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[1] X. Li et al.. “Algorithmic improvements for fast concurrent cuckoo hashing”, Eurosys, 2014. 38



Conclusion

➢ Traditional indexing techniques originally designed for 

DRAM become inefficient in PM

➢ We propose level hashing, a write-optimized and high-

performance hashing index scheme for PM

– Write-optimized hash table structure

– Cost-efficient in-place resizing

– Log-free consistency guarantee

➢ 1.4×−3.0× speedup for insertion, 1.2×−2.1× speedup 

for update, and over 4.3× speedup for resizing
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Thanks! Q&A
(Poster #10)

Open-source code: https://github.com/Pfzuo/Level-Hashing

https://github.com/Pfzuo/Level-Hashing

