Neural Adaptive Content-aware Internet Video Delivery

Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, Dongsu Han
Adaptive streaming has been widely deployed (a primary tool for improving user QoE)
Traditional Approaches

Optimizing ABR algorithms
Pensieve [SIGCOMM 17], MPC [SIGCOMM 15]

Choosing better servers, CDNs
Content Multihoming [SIGCOMM 12], VDN [SIGCOMM 15]

Leveraging centralized control plan
Video Control Plane [SIGCOMM 12], Pythease [NSDI 17]

Goal: Find how to best utilize the network resource
Limitation of Current Video Delivery

Video quality **heavily depends** on available bandwidth

- Video server
- **Network Congestion**
- Directly affect
- Client
- Low Quality
Client computing power is scarcely utilized other than for decoding.
Observation on Current Video Ecosystem

Standard codecs efficiently reduce redundancy inside GOP

Video: Intra-frame coding

Group of Pictures (GOP): Inter-frame coding

Standard codecs (H.26x, VPx, AV1)

Compressed:
- I-frame
- P-frames
- I-frame

: Intra-frame coding
: Inter-frame coding
Observation on Current Video Ecosystem

Standard codecs efficiently reduce redundancy inside GOP

Group of Pictures (GOP): 2—10 seconds

Video: Intra-frame coding
Group of Pictures (GOP)
Inter-frame coding
Standard codecs (H.26x, VPx, AV1)
Compressed
Video Quality
Seamless switching
Time
[Adaptive streaming]
I-frame
P-frames
I-frame

I-frame
P-frames
I-frame

Compressed

Standard codecs (H.26x, VPx, AV1)

Intra-frame coding
Inter-frame coding

Video: Intra-frame coding
Group of Pictures (GOP)
Inter-frame coding
Standard codecs (H.26x, VPx, AV1)
Compressed
Video Quality
Seamless switching
Time
[Adaptive streaming]
I-frame
P-frames
I-frame

I-frame
P-frames
I-frame

Compressed

Standard codecs (H.26x, VPx, AV1)
Limitation of Current Video Delivery

Standard codecs lack any mechanisms for exploiting redundancy that occurs at large timescales.
1. Utilizes computing resource to enhance video quality

2. Trained and operate in large timescales (video)
Key Observations on Deep Neural Network

1. Utilizes computing resource to enhance video quality

2. Trained and operate in large timescales (video)
Key Observations on Deep Neural Network

1. Utilizes computing resource to enhance video quality

Can we overcome the current limitations via DNN?
How much QoE improvement can we achieve?
Existing Approach
(Pensieve – SIGCOMM 17)

NAS
NAS: DNN-based Video Delivery

Apply super-resolution DNN on top of bitrate adaptation.
NAS: Design Scope

1. Content: Video on demand (VOD)

 ![YouTube](image1) ![Netflix](image2) ![Hulu](image3) ![Amazon](image4)

Example

2. Computing device: Desktop-class GPUs

 GTX 1050 Ti (Entry-level) Titan Xp (High-end)

 ![Example](image5)

Price

$139 $1,200
NAS: Two Initial Challenges

1. DNN accuracy is unreliable for new content → Guarantee performance
 - New content
 - Generic super-resolution\(^1,2,3\)
 - Quality
 - SSIM = 0.86
 - SSIM = 0.84

2. Client must process DNN at real-time, but computing power varies across space and time,
 - Client A: Entry-level GPU
 - Client B: High-end GPU
 - Require adaptation to computing power

1: SRCNN-ECCV14, 2: VDSR-CVPR 16, 3: EDSR-CVPRW 17
Key Design (1): Content-aware DNN

Challenge: Providing reliable DNN quality

1. New video admission

2. Generates a content-aware DNN per-video

Video server

Video 1

Video 2

Super-resolution DNN 1

Super-resolution DNN 2

Content-aware DNN delivers the reliable training accuracy instead of the unpredictable testing accuracy.
Training a content-aware super-resolution

1. Prepares training data
 - High-resolution (1080p)
 - Low-resolutions (240p—720p)

2. Updates the DNN parameters
 - Updates parameters
 - Input
 - DNN
 - Output
 - Target
Implication on Video Encoding

Standard codecs + Content-aware DNN
Key Design (2): Multiple Quality DNNs

Challenge: Enabling real-time super-resolution on heterogeneous clients

1. Provides multiple quality DNN options

Video server → Downloads all? Several MBs → Client

- Quality: Low → High
- Size: Small (93KB) → Large (2,143KB)
- Compute: Low → High
Key Design (2): Multiple Quality DNNs

Challenge: Enabling real-time super-resolution on heterogeneous clients

1. Provides multiple quality DNN options
 - Quality: Low → High
 - Size: Small (93KB) → Large (2,143KB)
 - Compute: Low → High

2. Delivers DNN description
 - (#Layer, #Channel)

3. Test-runs and selects the highest-quality running at real-time
 - 53 fps
 - 52 fps
 - 38 fps
 - 21 fps

Mock DNNs
Computing device (GTX 1080)
Selected
NAS: Two Additional Challenges

⚠️ NAS streams video with a content-aware DNN, but ...

1. Takes long time to download and utilize a DNN

 - Example
 - Ultra-high (2,145KB)
 - 360p video (400Kbps)
 - 1 x 21 seconds x

 Incremental benefit

2. A DNN competes bandwidth with video

 - Example
 - Video server
 - Client

 Integrate with ABR
Key Design (3): Scalable DNN

Challenge: Takes a long time to utilize a DNN

1. Implement a scalable DNN (+ divide into similar-size chunks)
2. Download/Apply a partial DNN
Key Design (4): Integrated ABR

Challenge: How to decide when to download a DNN

- Extends a reinforcement-learning based ABR (Pensieve [SIGCOMM17])

QoE metric = bitrate - rebuffering – smoothness

Goal: Maximize the total QoE over an entire video
Key Design (4): Integrated ABR

Challenge: How to decide when to download a DNN

- Extends a reinforcement-learning based ABR (Pensieve [SIGCOMM17])

QoE metric = \(\text{DNN(bitrate)} \) - rebuffering – smoothness

Goal: Maximize the total QoE reflecting DNN-based quality enhancement
Putting All Together: Implementation

- Server
- DNN Processor (PyTorch): 6.3K LOC
- NAS Player (dash.js): Δ1.7K LOC (8.8%)
- Integrated ABR: 5.5K LOC
Evaluation

1) How much benefit does NAS deliver?

2) What are the cost and benefit of NAS?

3) Does NAS effectively adapt to heterogeneous clients?
NAS vs. Existing Video Delivery : QoE

• **17.8 hours real-world network traces**: collected from 3G network and broadband (average bandwidth: 1.31Mbps)

• **27 YouTube videos**: 5-24 minutes, encoded at \{400, 800, 1200, 2400, 4800\}kbps

• **Computing device**: NVIDIA Titan Xp, **DNN quality**: Ultra-high

• **Video player**: Chromium browser, **Video server**: Apache server
Existing Approach
(Pensieve – SIGCOMM 17)

If You Don’t Love Me
At My... Memes
AS SUGGESTED BY:

William Gardner 1 day ago
React to if you don’t love me at my,
then you don’t deserve me at my...

Rizzry264 3 days ago
You tubers react to if you don’t love me at my...memes pls!!!!

Fall Avenger 1 week ago
React to if you don’t love me you don’t
deserve me memes
NAS vs. Existing Video Delivery: QoE

- **17.8 hours real-world network traces**: collected from 3G network and broadband (average bandwidth: 1.31Mbps)
- **27 YouTube videos**: 5-24 minutes, encoded at \{400, 800, 1200, 2400, 4800\}kbps
- **Computing device**: NVIDIA Titan Xp, **DNN quality**: Ultra-high
- **Video player**: Chromium browser, **Video server**: Apache server

NAS improves user QoE by 43.08% compared to Pensieve and 92.28% compared to BOLA using same amount of bandwidth.
NAS vs. Existing Video Delivery: Cost

When the total viewing reaches 30 hours (per minute of video), NAS CDN recoups the initial training cost.

Pensieve CDN = 0.085$/GB
NAS CDN = 0.085$/GB
↓17.13% bandwidth for same quality

10 mins × 1.4$/hour
= 0.23$/minute of video
Heterogeneous Clients

NAS adapts to heterogeneous devices, and a device with higher computing power receives greater benefit.

<table>
<thead>
<tr>
<th>DNN quality</th>
<th>GPU model (Price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>GTX 1050 Ti ($139)</td>
</tr>
<tr>
<td>Medium</td>
<td>GTX 1060 ($249)</td>
</tr>
<tr>
<td>High</td>
<td>GTX 1070 Ti ($449)</td>
</tr>
<tr>
<td></td>
<td>GTX 1080 ($559)</td>
</tr>
<tr>
<td>Ultra-high</td>
<td>GTX 1080 Ti ($669)</td>
</tr>
<tr>
<td></td>
<td>Titan Xp ($1,200)</td>
</tr>
</tbody>
</table>

Each GPU processes at real-time (> 30fps for all resolutions)

Average QoE CDF better

- BOLA
- RobustMPC
- Pensieve

Low Medium High Ultra-high

0 0.2 0.4 0.6 0.8 1

Average QoE

0 0.5 1 1.5 2 2.5
Conclusion

• NAS presents a new type of QoE maximization & encoding via DNN
• NAS accommodates four key designs: Content-aware DNN, Multiple quality DNNs, Scalable DNN, Integrated ABR.
• NAS can improve user QoE or reduce the video delivery cost for CDN.