
Clarinet: WAN-Aware Optimization for 
Analytics Queries 

Raajay Viswanathan,  Ganesh Ananthanarayanan, Aditya Akella

1



Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user



Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user



Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user



Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user



Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user
• Need efficient methods to analyze data located in multiple data centers



Centralized Aggregation is Wasteful

3



Centralized Aggregation is Wasteful

3

Intra-data center
Analytics

Framework

SELECT * … FROM .. WHERE .. ;



Centralized Aggregation is Wasteful

3

Intra-data center
Analytics

Framework

SELECT * … FROM .. WHERE .. ;

• Available WAN bandwidth is limited  Aggregation latency overhead

0

50

100

150

200

250

300

350

400

450

500

1 11 21 31 41 51 61 71 81

B
an

d
w

id
th

 (
M

b
p

s)

Directional WAN links sorted by 
bandwidth

Measured pairwise bandwidth 
between EC2 regions

450 Mbps

20 Mbps



Centralized Aggregation is Wasteful
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Intra-data center
Analytics

Framework

SELECT * … FROM .. WHERE .. ;

• Available WAN bandwidth is limited  Aggregation latency overhead

• WAN links are expensive  High data transfer cost
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Logical plan to physical plan Assign parallelism for each stageClarinet binds query to plan lower in the stack
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Network aware placement and scheduling

• Task placement decided greedily one stage at a time
• Minimize per stage run time

• Scheduling of network transfers
• Determines start times of inter-DC network transfers
• Formulate a Binary Integer Linear Program to solve 

scheduling
• Factors transfer dependencies
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How to extend the late-binding strategy to 
multiple queries?
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Choosing execution plans jointly for multiple 
queries improves performance 
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• SJF & reservation leads to bandwidth fragmentation
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Alternate  schedule with same query plans
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Scheduled in SJF order

22

Dominant transfers execute 
sequentiallyRe-arranging transfers resulting in deviation from 

SJF schedule can help
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k-Shortest Jobs First Heuristic
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Link 1

Link 2

• Identify transfers of k-shortest yet incomplete jobs
• Relax transfer schedule  Start as soon as link is free and task is available
• Best ’k’ Prior observations (or) through offline simulations

Link n
Offline schedule

t
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QUERY 1 QUERY 2 QUERY 3

QO QO QO Existing Query Optimizers
• Modified Hive to generate multiple 

plans
• QOs control set of generated plans
• Existing optimizations are applied

• Push down Select
• Partition pruning

Batch of queries
Online query arrivals

Enforces Clarinet’s schedule
• Modified Tez’s DAGScheduler
• Fairness guarantees

Clarinet

Execution framework
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1. Hive
2. Hive + Iridium
3. Hive + Reducers in single DC

: WAN agnostic task placement + scheduling
: WAN aware task placement across DCs
: Distributed filtering + central aggregation

Compare Clarinet with following GDA approaches:

• Geo-Distributed Analytics stack across 10 EC2 regions

• Workload:
• 30 batches of 12 randomly chosen TPC-DS queries
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Evaluation: Optimization overhead

1. Generate multiple query plans
• Up to 64 plans in less than 5 s

2. Iterative multi-query plan selection
• Max. 15 s for batches with 12 queries

Insignificant w.r.t. query running times (order of 10’s of minutes)
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2.7x
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