EC-Cache: Load-balanced,
Low-latency Cluster Caching with
Online Erasure Coding

Rashmi Vinayak
UC Berkeley

Joint work with

Mosharaf Chowdhury, Jack Kosaian (U Michigan)
lon Stoica, Kannan Ramchandran (UC Berkeley)

Caching for data-intensive clusters

« Data-intensive clusters rely on distributed, in-memory
caching for high performance

Reading from memory orders of magnitude faster than from
disk/ssd

Example: Alluxio (formerly Tachyon®)

"Li et al. SOCC 2014

Imbalances prevalent in clusters

Sources of imbalance:

« Skew in object popularity
* Background network imbalance

e Failures/unavailabilities

Imbalances prevalent in clusters

Sources of imbalance:

« Skew in object popularity

Small fraction of objects highly popular
Zipf-like distribution

Top 5% of objects 7x more popular than bottom 75%"
(Facebook and Microsoft production cluster traces)

"TAnanthanarayanan et al. NSDI 2012

Imbalances prevalent in clusters

Sources of imbalance:

* Background network imbalance

Some parts of the network more congested than others

Ratio of maximum to average utilization more than 4.5x
with > 50% utilization

(Facebook data-analytics cluster)

Imbalances prevalent in clusters

Sources of imbalance:

* Background network imbalance

Some parts of the network more congested than others

Ratio of maximum to average utilization more than 4.5x
with > 50% utilization

(Facebook data-analytics cluster)

Similar observations from other production clusters’

" Chowdhury et al. SIGCOMM 2013

Imbalances prevalent in clusters

Sources of imbalance:

e Failures/unavailabilites

Norm rather than the exception

median > 50 machine unavailability events every day in a
cluster of several thousand servers'’

(Facebook data analytics cluster)

"Rashmi et al. HotStorage 2013

Imbalances prevalent in cluster

= Adverse effects:

oad imbalance

- high read latency

Imbalances prevalent in cluster

= Adverse effects:

oad imbalance

nigh read latency

Single copy in memory often not sufficient to get good performance

Popular approach: Selective Replication

* Uses some memory overhead to cache replicas of objects
based on their popularity

- more replicas for more popular objects

Popular approach: Selective Replication

* Uses some memory overhead to cache replicas of objects
based on their popularity

more replicas for more popular objects

Server 1 Server 2 Server 3

AR L -
o

GET A GET B

Popular approach: Selective Replication

* Uses some memory overhead to cache replicas of objects
based on their popularity

more replicas for more popular objects

Server 1 Server 2 Server 3

1X* 1X* 1x*

GET A GET B GET A

Popular approach: Selective Replication

* Uses some memory overhead to cache replicas of objects
based on their popularity

more replicas for more popular objects

Server 1 Server 2 Server 3

1X* 1X* 1x*

GET A GET B GET A

e Used in data-intensive clusters’ as well as widely used in
key-value stores for many web-services such as Facebook
Tao*

"TAnanthanarayanan et al. NSDI 2011, *Bronson et al. ATC 2013

Read performance \
& Load balance |

Memory Overhead

Read performance \
& Load balance |

Single copy
in memory

Memory Overhead

Read performance \
& Load balance |
_ @ Selective

"""""""""" replication

L 4
-
1 d
L d
-
- -
-

Single copy
in memory

Memory Overhead

o [ccrd

¢4

Read performance |
& Load balance | :
_ @ Selective

__________ replication

L 4
-
1 d
L d
-
’4
-

Single copy
in memory

Memory Overhead

4

“Erasure Coding’

o [ccrd

¢4

Read performance \
& Load balance | :
_ @ Selective

"""""""""" replication

L 4
-
1 d
L d
-
’4
-

Single copy
in memory

Memory Overhead

Quick primer on erasure coding

Quick primer on erasure coding

« Takes in k data units and creates r “parity” units

Quick primer on erasure coding

« Takes in k data units and creates r “parity” units

* Any k of the (k+r) units are sufficient to decode the original
k data units

Quick primer on erasure coding

« Takes in k data units and creates r “parity” units

* Any k of the (k+r) units are sufficient to decode the original
k data units

data units parity units
l . \ [I | e k=5

di d2||(d3| |d4 d5||p1 p2| p3| p4 e r =4

Quick primer on erasure coding

« Takes in k data units and creates r “parity” units

* Any k of the (k+r) units are sufficient to decode the original
k data units

data units parity Iunits

A
| | N 1 —

di d2||(d3| |d4 d5||p1 p2| p3| p4 e r =4

1] ’ .
' " . P
RV A A %

Read

Quick primer on erasure coding

« Takes in k data units and creates r “parity” units

* Any k of the (k+r) units are sufficient to decode the original

k data units
data units parity units
| A \ [A \ ° —
di d2||(d3 |d4 d5 p1 p2 p3 p4 e r =4
s'vv: ¢ z"z"
Read
Decode

di| d2| d3 |d4 d5

Quick primer on erasure coding

« Takes in k data units and creates r “parity” units

* Any k of the (k+r) units are sufficient to decode the original
k data units

data units parity Iunits

A
| | N 1 —

di d2||(d3| |d4 d5||p1 p2| p3| p4 e r =4

1] . .
v " AR
Vv K © L

Read

Quick primer on erasure coding

« Takes in k data units and creates r “parity” units

* Any k of the (k+r) units are sufficient to decode the original
k data units

data units parity Iunits

A
| | N 1 —

di d2||(d3| |d4 d5||p1 p2| p3| p4 e r =4

1] . .
v " AR
Vv K © L

Read

v

Decode

dl |d2 |d3 |d4 d5

EC-Cache bird’s eye view: Writes

EC-Cache bird’s eye view: Writes

*Put X

Caching servers

EC-Cache bird’s eye view: Writes

*Put X

* Object split into k data units Split | k
di| | d2

I
N

Caching servers

EC-Cache bird’s eye view: Writes

*Put X

* Object split into k data units Split | k=2
di| | d2
. Enf:oded to generate r parity Ceode k=2
units r=1
d1 d2 pf

Caching servers

EC-Cache bird’s eye view: Writes

*Put X

* Object split into k data units Split | k
di| | d2

I
N

 Encoded to generate r parity
units

<
= A

1l
= N

e (k+r) units cached on distinct
servers chosen uniformly at

random Caching servers

EC-Cache bird’s eye view: Reads

EC-Cache bird’s eye view: Reads

 Read from (k + A) units of the
object chosen uniformly at
random

- “Additional reads”

 Use the first k units that arrive

EC-Cache bird’s eye view: Reads

 Read from (k + A) units of the
object chosen uniformly at
random

- “Additional reads”

e Use the first k units that arrive

*Getx

achin servers

EC-Cache bird’s eye view: Reads

Cachmg servers
 Read from (k + A) units of the

object chosen uniformly at \

random A=1

Read units
- “Additional reads” k+A=3

e Use the first k units that arrive

= A
Il
= N

*Getx

EC-Cache bird’s eye view: Reads

achin servers

 Read from (k + A) units of the
object chosen uniformly at

random S A=1
e . Read units
Additional reads k+A=3

e Use the first k units that arrive

*Getx

EC-Cache bird’s eye view: Reads

 Read from (k + A) units of the
object chosen uniformly at
random

“Additional reads”

e Use the first k units that arrive

Cachin servers

‘N k'

4
rael

Read units

d2

pi

*Getx

EC-Cache bird’s eye view: Reads

 Read from (k + A) units of the
object chosen uniformly at
random

“Additional reads”

e Use the first k units that arrive

*Getx

Cachin servers

EC-Cache bird’s eye view: Reads

 Read from (k + A) units of the
object chosen uniformly at
random

“Additional reads”

e Use the first k units that arrive

« Decode the data units

Cachin servers

EC-Cache bird’s eye view: Reads

 Read from (k + A) units of the
object chosen uniformly at
random

“Additional reads”

e Use the first k units that arrive

« Decode the data units

e Combine the decoded units

Cachin servers

Combine

X

*Getx

Erasure coding: How does it help?

Erasure coding: How does it help?

1. Finer control over memory overhead
Selective replication allows only integer control
Erasure coding allows fractional control

E.g., k =10 allows control in of multiples of 0.1

Erasure coding: How does it help?

1. Finer control over memory overhead
Selective replication allows only integer control
Erasure coding allows fractional control

E.g., k =10 allows control in of multiples of 0.1

2. Object splitting helps in load balancing
Smaller granularity reads help to smoothly spread load

Analysis on a certain simplified model:

Var(Lgc-cache) 1
V&I’(L Selective Replication) k

Erasure coding: How does it help?

3. Object splitting reduces median latency but hurts tail
latency

Read parallelism helps reduce median latency

- Straggler effect hurts tail latency (if no additional reads)

Erasure coding: How does it help?

3. Object splitting reduces median latency but hurts tail
latency

Read parallelism helps reduce median latency

- Straggler effect hurts tail latency (if no additional reads)

4. “Any k out of (k+r)” property helps to reduce tail latency

Read from (k + A) and use the first k that arrive

- A =1 often sufficient to reign in tail latency

Design considerations

Design considerations

1. Purpose of erasure codes

Storage systems

EC-Cache

» Space-efficient fault tolerance

* Reduce read latency

 Load balance

Design considerations

2. Choice of erasure code

Storage systems

EC-Cache

Design considerations

2. Choice of erasure code

Storage systems EC-Cache

 Optimize resource usage
during reconstruction
operations’

e Some codes do not have
“any k out of (k+r)” property

"Rashmi et al. SIGCOMM 2014, Sathiamoorthy et al. VLDB 2013, Huang et al. ATC 2012

Design considerations

2. Choice of erasure code

Storage systems EC-Cache
* No reconstruction operations
» Optimize resource usage in caching layer; data
during reconstruction persisted in underlying
operations’ storage
» Some codes do not have * “Any k out of (k+r)” property
”any k out of (k+r)” oroperty hElpS in load balancing and

reducing latency when
reading objects

"Rashmi et al. SIGCOMM 2014, Sathiamoorthy et al. VLDB 2013, Huang et al. ATC 2012

Design considerations

3. How do we use erasure coding: across vs. within objects

Storage systems EC-Cache

Design considerations

3. How do we use erasure coding: across vs. within objects

Storage systems EC-Cache

* Some systems encode across
objects (e.g., HDFS-RAID);
some within (e.g., Ceph)

* Does not affect fault tolerance

Design considerations

3. How do we use erasure coding: across vs. within objects

Storage systems EC-Cache

» Some systems encode across | * Need to encode within objects

objects (e.g., HDFS-RAID); - To spread load across both
some within (e.g., Ceph) data & parity

+ Does not affect fault tolerance | * Encoding across: Very high BW
overhead for reading object

using parities’

"Rashmi et al. SIGCOMM 2014, HotStorage 2013

Implementation

 EC-Cache on top of Alluxio (formerly Tachyon)
Backend caching servers: cache data — unaware of erasure coding

EC-Cache client library: all read/write logic handled

Implementation

 EC-Cache on top of Alluxio (formerly Tachyon)
Backend caching servers: cache data — unaware of erasure coding

EC-Cache client library: all read/write logic handled

e Reed-Solomon code

Any k out of (k+r) property

Implementation

 EC-Cache on top of Alluxio (formerly Tachyon)
Backend caching servers: cache data — unaware of erasure coding

EC-Cache client library: all read/write logic handled

e Reed-Solomon code

Any k out of (k+r) property

* Intel ISA-L hardware acceleration library

Fast encoding and decoding

Evaluation set-up

Evaluation set-up

 Amazon EC2

e 25 backend caching servers and 30 client servers

Evaluation set-up

e Amazon EC2
e 25 backend caching servers and 30 client servers

« Object popularity: Zipf distribution with high skew

Evaluation set-up

« Amazon EC2
e 25 backend caching servers and 30 client servers
« Object popularity: Zipf distribution with high skew
e EC-Cacheusesk=10, A=1
BW overhead = 10%

Evaluation set-up

« Amazon EC2
e 25 backend caching servers and 30 client servers
« Object popularity: Zipf distribution with high skew
e EC-Cacheusesk=10, A=1
BW overhead = 10%

* Varying object sizes

Load balancing

400

Data Read (GB)
o)
S S
= =)

[
)
()

0

Servers Sorted by Load

400
350
2 300
< 250

=]
E 200
s 150

<
2 100
50

Servers Sorted by Load

Selective Replication

EC-Cache

Load balancing

400

Data Read (GB)
o)
S S
= =)

[
)
()

0

Servers Sorted by Load

400
350
2 300
< 250

=]
E 200
s 150

<
2 100
50

Servers Sorted by Load

Selective Replication

e Percent imbalance metric:

EC-Cache

Load balancing

400

Data Read (GB)
) L
S S
= =)

[
)
()

0

Servers Sorted by Load

400
350
2 300
< 250

=
E 200
s 150

<
2 100
50

Servers Sorted by Load

Selective Replication

e Percent imbalance metric:

Asr = 43.45%

A:(L

EC-Cache

max

T Lav *
£) x 100
Lavg*

Aec = 13.14%

> 3Xx reduction in load imbalance metric

Read latency

1400
1200
1000
800
600
400
200

Read Latency (ms)

B Selective Replication

. EC-Cache -
%0
. o
| I\
=)
- m g v
12, &_ 83 g8
© - e —
i B B B l
Mean Median 95th 99th 99.9th

Read latency

1400 i ™ Selective Replication
21200 { "EC-Cache _
-’ oo
> 1000 - %
S 800 -
<
= 600 - -
2 400 {1 I & g
Q S N o
%200 - I* 3 I“

0

Mean Median 95th 99th 99.9th

 Median: 2.64x improvement
* 99th and 99.9th: ~¥1.75x improvement

Varying object sizes

Median latency Tail latency

EC-Cache (Median) EC-Cache (99th)
® Selective Replication (Median) 1500 4 ™ Selective Replication (99th)

Read Latency (ms)
n o
(—)
= (— =)
Read Latency (ms)
n o
S =
=) =) =
{.
||
i
k
|
"E

10 30 S0 70 90 10 30 50 70 90

Object Size (MB) Object Size (MB)
5.5x improvement for 100MB 3.85x improvement for 100 MB

More improvement for larger object sizes

Role of additional reads (A)

0.8
= 0.6
< 0.4
0.2

—=—EC-Cache, A=0
EC-Cache, A=1
—a&—Selective Replication

20 40 60 30
Read Latency (ms)

Role of additional reads (A)

Significant degradation in tail latency
without additional reads (i.e., A = 0)

1 -
0.8 -
3 0.6 - ;E
Q "-
~ 04 -
—=—EC-Cache, A=0
0.2 - i EC-Cache, A=1
). —a&—Selective Replication
O Y I I I |
0 20 40 60 80

Read Latency (ms)

Additional evaluations in the paper

* With background network imbalance
* With server failures
* Write performance

» Sensitivity analysis for all parameters

Summary

e EC-Cache

Cluster cache employing erasure coding for load balancing and
reducing read latencies

Demonstrates new application and new goals for which erasure
coding is highly effective

Summary

e EC-Cache

Cluster cache employing erasure coding for load balancing and
reducing read latencies

Demonstrates new application and new goals for which erasure
coding is highly effective

* Implementation on Alluxio

* Evaluation
- Load balancing: > 3x improvement
- Median latency: > 5x improvement
- Tail latency: > 3x improvement

Summary

e EC-Cache

Cluster cache employing erasure coding for load balancing and
reducing read latencies

Demonstrates new application and new goals for which erasure
coding is highly effective

* Implementation on Alluxio

* Evaluation
- Load balancing: > 3x improvement
- Median latency: > 5x improvement
- Tail latency: > 3x improvement

Thanks!

