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Caching for data-intensive clusters

« Data-intensive clusters rely on distributed, in-memory
caching for high performance

Reading from memory orders of magnitude faster than from
disk/ssd

Example: Alluxio (formerly Tachyon®)

"Li et al. SOCC 2014
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Imbalances prevalent in clusters

Sources of imbalance:

« Skew in object popularity

Small fraction of objects highly popular
Zipf-like distribution

Top 5% of objects 7x more popular than bottom 75%"
(Facebook and Microsoft production cluster traces)

"TAnanthanarayanan et al. NSDI 2012



Imbalances prevalent in clusters

Sources of imbalance:

* Background network imbalance

Some parts of the network more congested than others

Ratio of maximum to average utilization more than 4.5x
with > 50% utilization

(Facebook data-analytics cluster)



Imbalances prevalent in clusters

Sources of imbalance:

* Background network imbalance

Some parts of the network more congested than others

Ratio of maximum to average utilization more than 4.5x
with > 50% utilization

(Facebook data-analytics cluster)

Similar observations from other production clusters’

" Chowdhury et al. SIGCOMM 2013



Imbalances prevalent in clusters

Sources of imbalance:

e Failures/unavailabilites

Norm rather than the exception

median > 50 machine unavailability events every day in a
cluster of several thousand servers'’

(Facebook data analytics cluster)

"Rashmi et al. HotStorage 2013
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Imbalances prevalent in cluster

= Adverse effects:

oad imbalance

nigh read latency

Single copy in memory often not sufficient to get good performance
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Popular approach: Selective Replication

* Uses some memory overhead to cache replicas of objects
based on their popularity

more replicas for more popular objects

Server 1 Server 2 Server 3

1X* 1X* 1x*

GET A GET B GET A

e Used in data-intensive clusters’ as well as widely used in
key-value stores for many web-services such as Facebook
Tao*

"TAnanthanarayanan et al. NSDI 2011, *Bronson et al. ATC 2013
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Quick primer on erasure coding

« Takes in k data units and creates r “parity” units

* Any k of the (k+r) units are sufficient to decode the original
k data units

data units parity Iunits
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EC-Cache bird’s eye view: Writes

*Put X

* Object split into k data units Split | k
di| | d2

I
N

 Encoded to generate r parity
units

<
= A

1l
= N

e (k+r) units cached on distinct
servers chosen uniformly at

random Caching servers
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EC-Cache bird’s eye view: Reads

 Read from (k + A) units of the
object chosen uniformly at
random

“Additional reads”

e Use the first k units that arrive

« Decode the data units

e Combine the decoded units

Cachin servers

Combine

X

*Getx
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Erasure coding: How does it help?

1. Finer control over memory overhead
Selective replication allows only integer control
Erasure coding allows fractional control

E.g., k =10 allows control in of multiples of 0.1

2. Object splitting helps in load balancing
Smaller granularity reads help to smoothly spread load

Analysis on a certain simplified model:

Var( Lgc-cache ) 1
V&I’(L Selective Replication) k
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Erasure coding: How does it help?

3. Object splitting reduces median latency but hurts tail
latency

Read parallelism helps reduce median latency

- Straggler effect hurts tail latency (if no additional reads)

4. “Any k out of (k+r)” property helps to reduce tail latency

Read from (k + A) and use the first k that arrive

- A =1 often sufficient to reign in tail latency
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Design considerations

1. Purpose of erasure codes

Storage systems

EC-Cache

» Space-efficient fault tolerance

* Reduce read latency

 Load balance
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Design considerations

2. Choice of erasure code

Storage systems EC-Cache

 Optimize resource usage
during reconstruction
operations’

e Some codes do not have
“any k out of (k+r)” property

"Rashmi et al. SIGCOMM 2014, Sathiamoorthy et al. VLDB 2013, Huang et al. ATC 2012




Design considerations

2. Choice of erasure code

Storage systems EC-Cache
* No reconstruction operations
» Optimize resource usage in caching layer; data
during reconstruction persisted in underlying
operations’ storage
» Some codes do not have * “Any k out of (k+r)” property
”any k out of (k+r)” oroperty hElpS in load balancing and

reducing latency when
reading objects

"Rashmi et al. SIGCOMM 2014, Sathiamoorthy et al. VLDB 2013, Huang et al. ATC 2012
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Design considerations

3. How do we use erasure coding: across vs. within objects

Storage systems EC-Cache

» Some systems encode across | * Need to encode within objects

objects (e.g., HDFS-RAID); - To spread load across both
some within (e.g., Ceph) data & parity

+ Does not affect fault tolerance | * Encoding across: Very high BW
overhead for reading object

using parities’

"Rashmi et al. SIGCOMM 2014, HotStorage 2013
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Implementation

 EC-Cache on top of Alluxio (formerly Tachyon)
Backend caching servers: cache data — unaware of erasure coding

EC-Cache client library: all read/write logic handled

e Reed-Solomon code

Any k out of (k+r) property

* Intel ISA-L hardware acceleration library

Fast encoding and decoding
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Evaluation set-up

« Amazon EC2
e 25 backend caching servers and 30 client servers
« Object popularity: Zipf distribution with high skew
e EC-Cacheusesk=10, A=1
BW overhead = 10%

* Varying object sizes
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Load balancing
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e Percent imbalance metric:

Asr = 43.45%
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> 3Xx reduction in load imbalance metric




Read latency
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Read latency
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 Median: 2.64x improvement
* 99th and 99.9th: ~¥1.75x improvement



Varying object sizes

Median latency Tail latency
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5.5x improvement for 100MB 3.85x improvement for 100 MB

More improvement for larger object sizes



Role of additional reads (A)
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Role of additional reads (A)

Significant degradation in tail latency
without additional reads (i.e., A = 0)
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Additional evaluations in the paper

* With background network imbalance
* With server failures
* Write performance

» Sensitivity analysis for all parameters
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Summary

e EC-Cache

Cluster cache employing erasure coding for load balancing and
reducing read latencies

Demonstrates new application and new goals for which erasure
coding is highly effective

* Implementation on Alluxio

* Evaluation
- Load balancing: > 3x improvement
- Median latency: > 5x improvement
- Tail latency: > 3x improvement

Thanks!



