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Caching'for'data4intensive'clusters

• Data.intensive#clusters#rely#on#distributed, in-memory#
caching#for#high#performance#

. Reading#from#memory#orders#of#magnitude#faster#than#from#
disk/ssd#

. Example:##Alluxio#(formerly#Tachyon†)

†Li#et#al.#SOCC#2014# 2
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• Background#network#imbalance#

• Failures/unavailabilites

Small#fracRon#of#objects#highly#popular#
. Zipf.like#distribuRon##
. Top#5%#of#objects#7x#more#popular#than#boWom#75%†#

(Facebook#and#MicrosoY#producRon#cluster#traces)

†Ananthanarayanan#et#al.#NSDI#2012#
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Sources#of#imbalance:#

• Skew#in#object#popularity#

• Background#network#imbalance#
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Some#parts#of#the#network#more#congested#than#others#
. RaRo#of#maximum#to#average#uRlizaRon#more#than#4.5x#
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Some#parts#of#the#network#more#congested#than#others#
. RaRo#of#maximum#to#average#uRlizaRon#more#than#4.5x#

with#>#50%#uRlizaRon##

(Facebook#data.analyRcs#cluster)

Imbalances'prevalent'in'clusters'

†#Chowdhury#et#al.#SIGCOMM#2013#

. Similar#observaRons#from#other#producRon#clusters†
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Sources#of#imbalance:#

• Skew#in#object#popularity#

• Background#load#imbalance#

• Failures/unavailabilites

Norm#rather#than#the#excepRon#
. median#>#50#machine#unavailability#events#every#day#in#a#

cluster#of#several#thousand#servers†#

(Facebook#data#analyRcs#cluster)

Imbalances'prevalent'in'clusters'

†Rashmi#et#al.#HotStorage#2013 6



➡ Adverse#effects:#
4 load#imbalance'

. high#read#latency
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➡ Adverse#effects:#
4 load#imbalance'

. high#read#latency

Imbalances'prevalent'in'cluster'

Sources#of#imbalance:#

• Skew#in#object#popularity#

• Background#network#imbalance#

• Failures/unavailabiliRes

Single#copy#in#memory#oYen#not#sufficient#to#get#good#performance
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Popular'approach:'Selec?ve'Replica?on

• Uses#some#memory#overhead#to#cache#replicas#of#objects#
based#on#their#popularity#
. more#replicas#for#more#popular#objects
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Popular'approach:'Selec?ve'Replica?on

• Uses#some#memory#overhead#to#cache#replicas#of#objects#
based#on#their#popularity#
. more#replicas#for#more#popular#objects

A B A

GET A GET AGET B

1x 1x1x

• Used#in#data.intensive#clusters†#as#well#as#widely#used#in#
key.value#stores#for#many#web.services#such#as#Facebook#
Tao‡

…
Server 1 Server 2 Server 3

†Ananthanarayanan#et#al.#NSDI#2011,##‡Bronson#et#al.#ATC!2013
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EC4Cache'bird’s'eye'view:'Writes

…

k#=#2#
r#=#1

X

Encode

p1

k#=#2Split
d2

d1 d2

p1d1 d2

Put

d1

• Object#split#into#k#data#units

• Encoded#to#generate#r#parity#
units

• (k+r)#units#cached#on#disRnct#
servers#chosen#uniformly#at#
random Caching#servers
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EC4Cache'bird’s'eye'view:'Reads

… k#=#2#
r#=#1
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Erasure'coding:'How'does'it'help?

1. Finer'control'over'memory'overhead'

. SelecRve#replicaRon#allows#only#integer#control#

. Erasure#coding#allows#fracRonal#control#

. E.g.,#k#=#10#allows#control#in#of#mulRples#of#0.1

2. Object'spliRng'helps'in'load'balancing'

. Smaller#granularity#reads#help#to#smoothly#spread#load#

. Analysis#on#a#certain#simplified#model:Theorem 1 For the setting described above:

Var(LEC-Cache)

Var(LSelective Replication)
=

1

k
.

Proof: Let w > 0 denote the popularity of each of the
files. The random variable LSelective Replication is distributed
as a Binomial random variable with F trials and success
probability 1

S , scaled by w. On the other hand, LEC-Cache
is distributed as a Binomial random variable with kF tri-
als and success probability 1

S , scaled by w
k . Thus we have

Var(LEC-Cache)

Var(LSelective Replication)
=

�
w
k

�
2

(kF ) 1

S

�
1� 1

S

�

w2F 1

S

�
1� 1

S

� =
1

k
,

thereby proving our claim. ⇤
Intuitively, the splitting action of EC-Cache leads to

a smoother load distribution in comparison to selective
replication. One can further extend Theorem 1 to accom-
modate a skew in the popularity of the objects. Such an
extension leads to an identical result on the ratio of the
variances. Additionally, the fact that each split of an ob-
ject in EC-Cache is placed on a unique server further
helps in evenly distributing the load, leading to even bet-
ter load balancing.

5.2 Impact on Latency

Next, we focus on how object splitting impacts read la-
tencies. Under selective replication, a read request for
an object is served by reading the object from a server.
We first consider naive EC-Cache without any additional
reads. Under naive EC-Cache, a read request for an ob-
ject is served by reading k of its splits in parallel from
k servers and performing a decoding operation. Let us
also assume that the time taken for decoding is negligi-
ble compared to the time taken to read the splits.

Intuitively, one may expect that reading splits in paral-
lel from different servers will reduce read latencies due
to the parallelism. While this reduction indeed occurs for
the average/median latencies, the tail latencies behave in
an opposite manner due to the presence of stragglers –
one slow split read delays the completion of the entire
read request.

In order to obtain a better understanding of the afore-
mentioned phenomenon, let us consider the following
simplified model. Consider a parameter p 2 [0, 1] and
assume that for any request, a server becomes a straggler
with probability p, independent of all else. There are two
primary contributing factors to the distributions of the la-
tencies under selective replication and EC-Cache:

(a) Proportion of stragglers: Under selective replica-
tion, the fraction of requests that hit stragglers is p. On
the other hand, under EC-Cache, a read request for an
object will face a straggler if any of the k servers from
where splits are being read becomes a straggler. Hence,

a higher fraction
�
1� (1� p)k

�
of read requests can hit

stragglers under naive EC-Cache.
(b) Latency conditioned on absence/presence of strag-

glers: If a read request does not face stragglers, the time
taken for serving a read request is significantly smaller
under EC-Cache as compared to selective replication be-
cause splits can be read in parallel. On the other hand, in
the presence of a straggler in the two scenarios, the time
taken for reading under EC-Cache is about as large as
that under selective replication.

Putting the aforementioned two factors together we get
that the relatively higher likelihood of a straggler under
EC-Cache increases the number of read requests incur-
ring a higher latency. The read requests that do not en-
counter any straggler incur a lower latency as compared
to selective replication. These two factors explain the de-
crease in the median and mean latencies, and the increase
in the tail latencies.

In order to alleviate the impact on tail latencies, we
use additional reads and late binding in EC-Cache. Reed-
Solomon codes have the property that any k of the collec-
tion of all splits of an object suffice to decode the object.
We exploit this property by reading more than k splits
in parallel, and using the k splits that are read first. It is
well known that such additional reads help in mitigating
the straggler problem and alleviate the affect on tail la-
tencies [36, 82].

6 Evaluation

We evaluated EC-Cache through a series of experiments
on Amazon EC2 [1] clusters using synthetic workloads
and traces from Facebook production clusters. The high-
lights of the evaluation results are:
• For skewed popularity distributions, EC-Cache im-

proves load balancing over selective replication by
3.3⇥ while using the same amount of memory. EC-
Cache also decreases the median latency by 2.64⇥
and the 99.9th percentile latency by 1.79⇥ (§6.2).

• For skewed popularity distributions and in the pres-
ence of background load imbalance, EC-Cache de-
creases the 99.9th percentile latency w.r.t. selective
replication by 2.56⇥ while maintaining the same
benefits in median latency and load balancing as in
the case without background load imbalance (§6.3).

• For skewed popularity distributions and in the pres-
ence of server failures, EC-Cache provides a graceful
degradation as opposed to the significant degradation
in tail latency faced by selective replication. Specif-
ically, EC-Cache decreases the 99.9th percentile la-
tency w.r.t. selective replication by 2.8⇥ (§6.4).

• EC-Cache’s improvements over selective replication
increase as object sizes increase in production traces;
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†Rashmi#et#al.#SIGCOMM#2014,##Sathiamoorthy#et#al.#VLDB#2013,#Huang#et#al.#ATC!2012

• No#reconstrucRon#operaRons#
in#caching#layer;#data#
persisted#in#underlying#
storage#

• “Any#k#out#of#(k+r)”#property#
helps#in#load#balancing#and#
reducing#latency#when#
reading#objects

• OpRmize#resource#usage#
during#reconstrucRon#
operaRons†#

• Some#codes#do#not#have###
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Design'considera?ons

Storage#systems EC.Cache

3. How'do'we'use'erasure'coding:'across'vs.'within'objects

• Need#to#encode#within#objects#
. To#spread#load#across#both#
data#&#parity#

• Encoding#across:#Very#high#BW#
overhead#for#reading#object#
using#pariRes†

• Some#systems#encode#across#
objects#(e.g.,#HDFS.RAID);#
some#within#(e.g.,#Ceph)#

• Does#not#affect#fault#tolerance#

†Rashmi#et#al.#SIGCOMM#2014,##HotStorage#2013 17
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Implementa?on

• EC.Cache#on#top#of#Alluxio#(formerly#Tachyon)#

. Backend#caching#servers:#cache#data#—#unaware#of#erasure#coding##

. EC.Cache#client#library:#all#read/write#logic#handled

• Reed.Solomon#code#

. Any#k#out#of#(k+r)#property

• Intel#ISA.L#hardware#acceleraRon#library##

. Fast#encoding#and#decoding
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• Object#popularity:#Zipf#distribuRon#with#high#skew

• EC.Cache#uses#k#=#10,##Δ#=#1#

. BW#overhead#=#10%
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• Percent#imbalance#metric:

e.g., 5.5⇥ at median for 100 MB objects with an up-
ward trend (§6.5).

• EC-Cache outperforms selective replication across a
wide range of values of k, r, and � (§6.6).

6.1 Methodology

Cluster Unless otherwise specified, our experiments
use 55 c4.8xlarge EC2 instances. 25 of these machines
act as the backend servers for EC-Cache, each with 8
GB cache space, and 30 machines generate thousands
of read requests to EC-Cache. All machines were in the
same Amazon Virtual Private Cloud (VPC) with 10 Gbps
enhanced networking enabled; we observed around 4-
5 Gbps bandwidth between machines in the VPC using
iperf.

As mentioned earlier, we implemented EC-Cache on
Alluxio [56], which, in turn, used Amazon S3 [2] as its
persistence layer and runs on the 25 backend servers. We
used DFS-Perf [5] to generate the workload on the 30
client machines.

Metrics Our primary metrics for comparison are la-
tency in reading objects and load imbalance across the
backend servers.

Given a workload, we consider mean, median, and
high-percentile latencies. We measure improvements in
latency as:

Latency Improvement =
Latency w/ Compared Scheme

Latency w/ EC-Cache

If the value of this “latency improvement” is greater (or
smaller) than one, EC-Cache is better (or worse).

We measure load imbalance using the percent imbal-
ance metric � defined as follows:

� =

✓
L
max

� Lavg?

Lavg?

◆
⇤ 100, (1)

where L
max

is the load on the server which is maximally
loaded and Lavg? is the load on any server under an oracle
scheme, where the total load is equally distributed among
all the servers without any overhead. � measures the
percentage of additional load on the maximally loaded
server as compared to the ideal average load. Because
EC-Cache operates in the bandwidth-limited regime, the
load on a server translates to the total amount of data read
from that server. Lower values of � are better. Note that
the percent imbalance metric takes into account the ad-
ditional load introduced by EC-Cache due to additional
reads.

Setup We consider a Zipf distribution for the popular-
ity of objects, which is common in many real-world ob-
ject popularity distributions [20, 23, 56]. Specifically, we
consider the Zipf parameter to be 0.9 (that is, high skew).

Unless otherwise specified, we allow both selective
replication and EC-Cache to use 15% memory overhead
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Figure 8: Read latencies under skewed popularity of objects.

to handle the skew in the popularity of objects. Selec-
tive replication uses all the allowed memory overhead
for handling popularity skew. Unless otherwise specified,
EC-Cache uses k = 10 and � = 1. Thus, 10% of the al-
lowed memory overhead is used to provide one parity
to each object. The remaining 5% is used for handling
popularity skew. Both schemes make use of the skew in-
formation to decide how to allocate the allowed memory
among different objects in an identical manner: the num-
ber of replicas for an object under selective replication
and the number of additional parities for an object under
EC-Cache are calculated so as to flatten out the popu-
larity skew to the extent possible starting from the most
popular object, until the memory budget is exhausted.

Moreover, both schemes use uniform random place-
ment policy to evenly distribute objects (splits in case of
EC-Cache) across memory servers.

Unless otherwise specified, the size of each object
considered in these experiments is 40 MB. We present
results for varying object sizes observed in the Facebook
trace in Section 6.5. In Section 6.6, we perform a sensi-
tivity analysis with respect to all the above parameters.

Furthermore, we note that while the evaluations pre-
sented here are for the setting of high skew in object
popularity, EC-Cache outperforms selective replication
in scenarios with low skew in object popularity as well.
Under high skew, EC-Cache offers significant benefits
in terms of load balancing and read latency. Under low
skew, while there is not much to improve in load balanc-
ing, EC-Cache will still provide latency benefits.

6.2 Skew Resilience

We begin by evaluating the performance of EC-Cache in
the presence of skew in object popularity.

Latency Characteristics Figure 8 compares the mean,
median, and tail latencies of EC-Cache and selective
replication. We observe that EC-Cache improves median
and mean latencies by 2.64⇥ and 2.52⇥, respectively.
EC-Cache outperforms selective replication at high per-

20



Load'balancing

0 

100 

200 

300 

400 

D
at

a 
R

ea
d 

(G
B

) 

Servers Sorted by Load 0 
50 

100 
150 
200 
250 
300 
350 
400 

D
at

a 
R

ea
d 

(G
B

) 

Servers Sorted by Load 

SelecRve#ReplicaRon EC.Cache

λSR = 43.45% λEC = 13.14%

• Percent#imbalance#metric:
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ward trend (§6.5).

• EC-Cache outperforms selective replication across a
wide range of values of k, r, and � (§6.6).

6.1 Methodology

Cluster Unless otherwise specified, our experiments
use 55 c4.8xlarge EC2 instances. 25 of these machines
act as the backend servers for EC-Cache, each with 8
GB cache space, and 30 machines generate thousands
of read requests to EC-Cache. All machines were in the
same Amazon Virtual Private Cloud (VPC) with 10 Gbps
enhanced networking enabled; we observed around 4-
5 Gbps bandwidth between machines in the VPC using
iperf.

As mentioned earlier, we implemented EC-Cache on
Alluxio [56], which, in turn, used Amazon S3 [2] as its
persistence layer and runs on the 25 backend servers. We
used DFS-Perf [5] to generate the workload on the 30
client machines.

Metrics Our primary metrics for comparison are la-
tency in reading objects and load imbalance across the
backend servers.

Given a workload, we consider mean, median, and
high-percentile latencies. We measure improvements in
latency as:

Latency Improvement =
Latency w/ Compared Scheme

Latency w/ EC-Cache

If the value of this “latency improvement” is greater (or
smaller) than one, EC-Cache is better (or worse).

We measure load imbalance using the percent imbal-
ance metric � defined as follows:
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where L
max

is the load on the server which is maximally
loaded and Lavg? is the load on any server under an oracle
scheme, where the total load is equally distributed among
all the servers without any overhead. � measures the
percentage of additional load on the maximally loaded
server as compared to the ideal average load. Because
EC-Cache operates in the bandwidth-limited regime, the
load on a server translates to the total amount of data read
from that server. Lower values of � are better. Note that
the percent imbalance metric takes into account the ad-
ditional load introduced by EC-Cache due to additional
reads.

Setup We consider a Zipf distribution for the popular-
ity of objects, which is common in many real-world ob-
ject popularity distributions [20, 23, 56]. Specifically, we
consider the Zipf parameter to be 0.9 (that is, high skew).

Unless otherwise specified, we allow both selective
replication and EC-Cache to use 15% memory overhead
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to handle the skew in the popularity of objects. Selec-
tive replication uses all the allowed memory overhead
for handling popularity skew. Unless otherwise specified,
EC-Cache uses k = 10 and � = 1. Thus, 10% of the al-
lowed memory overhead is used to provide one parity
to each object. The remaining 5% is used for handling
popularity skew. Both schemes make use of the skew in-
formation to decide how to allocate the allowed memory
among different objects in an identical manner: the num-
ber of replicas for an object under selective replication
and the number of additional parities for an object under
EC-Cache are calculated so as to flatten out the popu-
larity skew to the extent possible starting from the most
popular object, until the memory budget is exhausted.

Moreover, both schemes use uniform random place-
ment policy to evenly distribute objects (splits in case of
EC-Cache) across memory servers.

Unless otherwise specified, the size of each object
considered in these experiments is 40 MB. We present
results for varying object sizes observed in the Facebook
trace in Section 6.5. In Section 6.6, we perform a sensi-
tivity analysis with respect to all the above parameters.

Furthermore, we note that while the evaluations pre-
sented here are for the setting of high skew in object
popularity, EC-Cache outperforms selective replication
in scenarios with low skew in object popularity as well.
Under high skew, EC-Cache offers significant benefits
in terms of load balancing and read latency. Under low
skew, while there is not much to improve in load balanc-
ing, EC-Cache will still provide latency benefits.

6.2 Skew Resilience

We begin by evaluating the performance of EC-Cache in
the presence of skew in object popularity.

Latency Characteristics Figure 8 compares the mean,
median, and tail latencies of EC-Cache and selective
replication. We observe that EC-Cache improves median
and mean latencies by 2.64⇥ and 2.52⇥, respectively.
EC-Cache outperforms selective replication at high per-
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• Median:#2.64x#improvement#

• 99th#and#99.9th:#~1.75x#improvement
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Varying'object'sizes
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Addi?onal'evalua?ons'in'the'paper

• With#background#network#imbalance##

• With#server#failures#

• Write#performance#

• SensiRvity#analysis#for#all#parameters
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