
Realizing the fault-tolerance promise of
cloud storage using locks with intent

Srinath Setty, Chunzhi Su,* Jacob R. Lorch, Lidong Zhou,

Hao Chen,§ Parveen Patel, and Jinglei Ren

Microsoft Research
*The University of Texas at Austin

§Shanghai Jiao Tong University

Cloud application atop cloud storage is a recent
model of distributed systems

Simple APIs that hide cloud storage’s distributed machinery

Application’s

computation is

distributed

Application’s

state is in

reliable cloud

storage
…

Cloud application atop cloud storage is a recent
model of distributed systems

Simple APIs that hide cloud storage’s distributed machinery

No distributed coordination among VMs

Application’s

computation is

distributed

Application’s

state is in

reliable cloud

storage
…

This architecture poses an interesting problem

Reliable cloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

This architecture poses an interesting problem

Reliable cloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Application processes or VMs can fail

This architecture poses an interesting problem

Reliable cloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Application processes or VMs can fail

Network can drop/reorder messages

This architecture poses an interesting problem

Reliable cloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Application processes or VMs can fail

Network can drop/reorder messages

Such failures can introduce
inconsistencies to application’s state

Applications have to maintain invariants over their state

Example: Consistency between application’s data and indexes

Applications have to maintain invariants over their state

Example: Consistency between application’s data and indexes

Invariants should hold even with:

Applications have to maintain invariants over their state

Example: Consistency between application’s data and indexes

Invariants should hold even with:

Concurrent

operations

on cloud

storage state

Failures of

VMs running

the application

Applications have to maintain invariants over their state

Example: Consistency between application’s data and indexes

Invariants should hold even with:

A significant burden

on application

developers

Concurrent

operations

on cloud

storage state

Failures of

VMs running

the application

Applications have to maintain invariants over their state

Example: Consistency between application’s data and indexes

Invariants should hold even with:

Worse: APIs of cloud storage offer little support for this

A significant burden

on application

developers

Concurrent

operations

on cloud

storage state

Failures of

VMs running

the application

Applications have to maintain invariants over their state

Example: Consistency between application’s data and indexes

Invariants should hold even with:

Worse: APIs of cloud storage offer little support for this
Target systems: Azure table storage, Amazon DynamoDB, etc.

A significant burden

on application

developers

Concurrent

operations

on cloud

storage state

Failures of

VMs running

the application

Applications have to maintain invariants over their state

Example: Consistency between application’s data and indexes

Invariants should hold even with:

Worse: APIs of cloud storage offer little support for this
Target systems: Azure table storage, Amazon DynamoDB, etc.

Note: Other cloud storage systems (e.g., Aurora, Azure SQL) offer support for
failure handling, but they have different scaling, or monetary cost profiles

A significant burden

on application

developers

Concurrent

operations

on cloud

storage state

Failures of

VMs running

the application

A text book solution

Reliable cloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Replicate each VM using Paxos

A text book solution

Reliable cloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Replicate each VM using Paxos

Seems wasteful: storage uses
replication for fault tolerance

A text book solution

Reliable cloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Replicate each VM using Paxos

Seems wasteful: storage uses
replication for fault tolerance

Can we leverage the reliability from the storage

service to make applications tolerate failures?

Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

Arbitrary snippet of

code, with calls to

cloud storage

Intent

Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

k2 …

k3 …

Cloud table

Arbitrary snippet of

code, with calls to

cloud storage

Intent

Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

k2 …

k3 …

Cloud table

Arbitrary snippet of

code, with calls to

cloud storage

Intent

Object locked

with intent

Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

k2 …

k3 …

Cloud table

Arbitrary snippet of

code, with calls to

cloud storage

Intent

Object locked

with intent

Automatic failure

handling and simplify

concurrency

Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

New mechanisms to implement this abstraction
• Distributed atomic affinity logging (DAAL)

• Intent collector

Automatic failure

handling and simplify

concurrency

Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

New mechanisms to implement this abstraction
• Distributed atomic affinity logging (DAAL)

• Intent collector

Automatic failure

handling and simplify

concurrency

Require no

modifications to

storage; applies

generally

Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

New mechanisms to implement this abstraction
• Distributed atomic affinity logging (DAAL)

• Intent collector

Built several real-world, fault-tolerant cloud services

• Live re-partitioning of tables

• Snapshotting service

• ACID transactions

• …

Automatic failure

handling and simplify

concurrency

Require no

modifications to

storage; applies

generally

Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

New mechanisms to implement this abstraction
• Distributed atomic affinity logging (DAAL)

• Intent collector

Built several real-world, fault-tolerant cloud services

• Live re-partitioning of tables

• Snapshotting service

• ACID transactions

• …

Automatic failure

handling and simplify

concurrency

Require no

modifications to

storage; applies

generally

30-80% less code than

building directly on

cloud storage APIs

Rest of this talk

Olive’s abstractions and mechanisms

Evaluation of Olive

Exactly-once

protocol

Intent

collector

Lock

primitive

Storage model: Create, Read, Update, Delete,

UpdateIfUnchanged, AtomicBatchUpdate, Scan

Intents

Application code

Unmodified

storageCloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Unreliable

network

Locks with intents

Exactly-once

protocol

Intent

collector

Lock

primitive

Storage model: Create, Read, Update, Delete,

UpdateIfUnchanged, AtomicBatchUpdate, Scan

Intents

Application code

Unmodified

storageCloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Unreliable

network

Locks with intents

Olive client

library

Intent =An arbitrary snippet of code:

• Cloud storage operations

• Local computation (loops, recursion,

control flow, ...)

Intent =An arbitrary snippet of code:

• Cloud storage operations

• Local computation (loops, recursion,

control flow, ...)

Goal of exactly-once execution

Code should run as if it is executed by a

single, failure-free client

Challenges for exactly-once execution

Intent =An arbitrary snippet of code:

• Cloud storage operations

• Local computation (loops, recursion,

control flow, ...)

• Clients can fail partway

• Imperfect failure detection  multiple,

concurrent intent executions

Goal of exactly-once execution

Code should run as if it is executed by a

single, failure-free client

Olive records in reliable cloud storage whenever a step
of an intent is executed

step 0 objectsRead, …

step 1 objectsRead, …

Olive

toolkit

Cloud table: executionLog

(append only)

RunIntent(code)

Olive records in reliable cloud storage whenever a step
of an intent is executed

To execute read:

step 0 objectsRead, …

step 1 objectsRead, …

Olive

toolkit

Cloud table: executionLog

(append only)

RunIntent(code)

Olive records in reliable cloud storage whenever a step
of an intent is executed

To execute read:

1. Execute the read normally

step 0 objectsRead, …

step 1 objectsRead, …

Olive

toolkit

Cloud table: executionLog

(append only)

RunIntent(code)

Olive records in reliable cloud storage whenever a step
of an intent is executed

To execute read:

1. Execute the read normally

2. Append an entry to executionLog

step 0 objectsRead, …

step 1 objectsRead, …

Olive

toolkit

Cloud table: executionLog

(append only)

RunIntent(code)

Olive records in reliable cloud storage whenever a step
of an intent is executed

To execute read:

1. Execute the read normally

2. Append an entry to executionLog

step 0 objectsRead, …

step 1 objectsRead, …

Olive

toolkit

Cloud table: executionLog

(append only)

RunIntent(code)

This will not work for executing an update

inside an intent

Executing an update and recording it in executionLog
must be atomic

Step 0 objectsRead

Step 1 objectsRead

Olive

toolkit
Insert(step, value = {…})

Cloud table: executionLogRunIntent(intentId)

k2 …

k3 …

Cloud table: appTable

failure

Executing an update and recording it in executionLog
must be atomic

Step 0 objectsRead

Step 1 objectsRead

Olive

toolkit
Insert(step, value = {…})

Cloud table: executionLogRunIntent(intentId)

k2 …

k3 …

Cloud table: appTable

Failure to record after executing  violation of exactly-once

failure

Executing an update and recording it in executionLog
must be atomic

Step 0 objectsRead

Step 1 objectsRead

Olive

toolkit
Insert(step, value = {…})

Cloud table: executionLogRunIntent(intentId)

k2 …

k3 …

Cloud table: appTable

Failure to record after executing  violation of exactly-once

Storage systems we target do not support cross-table atomic updates

failure

Executing an update and recording it in executionLog
must be atomic

Step 0 objectsRead

Step 1 objectsRead

Olive

toolkit
Insert(step, value = {…})

Cloud table: executionLogRunIntent(intentId)

k2 …

k3 …

Cloud table: appTable

Failure to record after executing  violation of exactly-once

Storage systems we target do not support cross-table atomic updates

failure

Observe: executionLog need not be a single table

Olive introduces: Distributed atomic affinity logging
(DAAL)

Olive introduces: Distributed atomic affinity logging
(DAAL)

Leverage AtomicBatchUpdate for objects in the same shard or partition.

Olive introduces: Distributed atomic affinity logging
(DAAL)

Leverage AtomicBatchUpdate for objects in the same shard or partition.

• Azure table storage, Amazon DynamoDB, MongoDB, Cassandra, etc.

Olive introduces: Distributed atomic affinity logging
(DAAL)

Leverage AtomicBatchUpdate for objects in the same shard or partition.

• Azure table storage, Amazon DynamoDB, MongoDB, Cassandra, etc.

Olive

toolkit

RunIntent(intentId)

k2 …

Step x “log Update(k2, .)”

Cloud table: appTable

DAAL entry

Olive introduces: Distributed atomic affinity logging
(DAAL)

Leverage AtomicBatchUpdate for objects in the same shard or partition.

• Azure table storage, Amazon DynamoDB, MongoDB, Cassandra, etc.

Olive

toolkit

RunIntent(intentId)

k2 …

Step x “log Update(k2, .)”

Cloud table: appTable

DAAL entry

executionLog is not a single, global table:

• A global cloud table for recording read operations, and

• DAAL entries spread throughout

Benefits of Olive

Benefits of Olive

An Intent executes in entirety

Benefits of Olive

Without intents: “Does failing at line i violate

any invariant?”

An Intent executes in entirety

Benefits of Olive

Without intents: “Does failing at line i violate

any invariant?”

An Intent executes in entirety

Benefits of Olive

Without intents: “Does failing at line i violate

any invariant?”

An Intent executes in entirety

Benefits of Olive

Without intents: “Does failing at line i violate

any invariant?”

An Intent executes in entirety

Benefits of Olive

Without intents: “Does failing at line i violate

any invariant?”

An Intent executes in entirety

Benefits of Olive

Without intents: “Does failing at line i violate

any invariant?”

An Intent executes in entirety

Still, the developer must reason about

concurrent executions of intents

Locks are well-studied concurrency control primitive

CloudTable.Lock(k)

…

CloudTable.Update(k, …)

CloudTable.Unlock(k)

Client 1

Client 2

CloudTable.Lock(k)

…

CloudTable.Update(k, …)

CloudTable.Unlock(k)

Locks are well-studied concurrency control primitive

CloudTable.Lock(k)

…

CloudTable.Update(k, …)

CloudTable.Unlock(k)

Client 1

Client 2

CloudTable.Lock(k)

…

CloudTable.Update(k, …)

CloudTable.Unlock(k)

Executions will

be serialized, no

interleavings

Locks are well-studied concurrency control primitive

CloudTable.Lock(k)

…

CloudTable.Update(k, …)

CloudTable.Unlock(k)

Client 1

Client 2

CloudTable.Lock(k)

…

CloudTable.Update(k, …)

CloudTable.Unlock(k)

Executions will

be serialized, no

interleavings

Locks are dangerous,

since clients can fail

after acquiring a lock

Olive composes locks with intents

Olive composes locks with intents

Locks are owned by intents, not client VMs  any client can

unlock an object by executing the associated intent

Olive composes locks with intents

Traditional lock Locks with intent

Mutual exclusion Yes Yes

Survives client failures No Yes

Locks are owned by intents, not client VMs  any client can

unlock an object by executing the associated intent

Olive composes locks with intents

Traditional lock Locks with intent

Mutual exclusion Yes Yes

Survives client failures No Yes

Overall benefit: simplifies reasoning about concurrency in

the presence of failures (see our paper)

Locks are owned by intents, not client VMs  any client can

unlock an object by executing the associated intent

Exactly-once

protocol

Intent

collector

Lock

primitive

Storage model: Create, Read, Update, Delete,

UpdateIfUnchanged, AtomicBatchUpdate, Scan

Intents

Application code

Unmodified

storageCloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Unreliable

network

Locks with intents

Olive client

library

 



Implementation of Olive

Implemented 2,000 lines of C#

Abstracts the underlying storage system with a C# interface
• We write code to map that interface to different storage systems: 38 lines of

code for Azure table store, 107 lines of code for Amazon DynamoDB

Can be extended easily to Cassandra, MongoDB, Azure DocumentDB,
other cloud storage services, etc.

Olive’s abstractions and mechanisms

Evaluation of Olive



Evaluation questions

• Do Olive’s abstractions simplify building fault-tolerant applications?

• How do Olive-based artifacts perform relative to alternatives?

Does Olive’s locks with intent simplify building fault-
tolerant applications?

Metric: lines of code, with and without Olive

Does Olive’s locks with intent simplify building fault-
tolerant applications?

Service Without Olive With Olive

Snapshots 987 665

OCC-transactions 2,201 408

Live table re-partitioning 2,116 474

Metric: lines of code, with and without Olive

Does Olive’s locks with intent simplify building fault-
tolerant applications?

Service Without Olive With Olive

Snapshots 987 665

OCC-transactions 2,201 408

Live table re-partitioning 2,116 474

Metric: lines of code, with and without Olive

Note: Olive’s library is 2,000 lines of code

Does Olive’s locks with intent simplify building fault-
tolerant applications?

Key takeaway: Olive reduces lines of code by 30–80%

Service Without Olive With Olive

Snapshots 987 665

OCC-transactions 2,201 408

Live table re-partitioning 2,116 474

Metric: lines of code, with and without Olive

Note: Olive’s library is 2,000 lines of code

Does Olive’s locks with intent simplify building fault-
tolerant applications?

Key takeaway: Olive reduces lines of code by 30–80%

Our paper discusses how Olive simplifies reasoning about correctness

Service Without Olive With Olive

Snapshots 987 665

OCC-transactions 2,201 408

Live table re-partitioning 2,116 474

Metric: lines of code, with and without Olive

Note: Olive’s library is 2,000 lines of code

How do Olive-based artifacts perform relative to
alternatives?

How do Olive-based artifacts perform relative to
alternatives?

• Consider snapshotting service

How do Olive-based artifacts perform relative to
alternatives?

• Consider snapshotting service

• Baseline: database service in the cloud (Azure SQL)

How do Olive-based artifacts perform relative to
alternatives?

• Consider snapshotting service

• Baseline: database service in the cloud (Azure SQL)

• Metric: latency of cloud storage operations (Create, Read, Update)

How do Olive-based artifacts perform relative to
alternatives?

• Consider snapshotting service

• Baseline: database service in the cloud (Azure SQL)

• Metric: latency of cloud storage operations (Create, Read, Update)

• Olive’s artifact: uses lazy copy-on-write technique

How do Olive-based artifacts perform relative to
alternatives?

• Consider snapshotting service

• Baseline: database service in the cloud (Azure SQL)

• Metric: latency of cloud storage operations (Create, Read, Update)

• Olive’s artifact: uses lazy copy-on-write technique

• Olive’s underlying storage service: Azure table store (US-West)

Performance of Olive-based snapshotting service

0

50

100

150

Create Read Update Create Read Update

Baseline

Olive

First operation after a snapshot

ms

Performance of Olive-based snapshotting service

Olive is competitive with the baseline for most operations

0

50

100

150

Create Read Update Create Read Update

Baseline

Olive

First operation after a snapshot

ms

Performance of Olive-based snapshotting service

Baseline incurs 2X

higher latency

Olive is competitive with the baseline for most operations

0

50

100

150

Create Read Update Create Read Update

Baseline

Olive

First operation after a snapshot

ms

Performance of Olive-based snapshotting service

Baseline incurs 2X

higher latency

Olive incurs 5X

higher latency

Olive is competitive with the baseline for most operations

0

50

100

150

Create Read Update Create Read Update

Baseline

Olive

First operation after a snapshot

ms

Olive relates to many works

State machine replication [Schneider CSUR’90, Lamport TOCS’98, ….]

Failure recovery [Chandy & Ramamoorthy IEEE’72, Lowell et al. OSDI’00], Microreboot

[Candea et al. OSDI’04]

Leases [Gray SOSP’89], distributed locks with lease-like expiration [Burrows OSDI’06],

revocable locks [Harris & Fraser PPoPP’05]

Write-ahead logging [Astrahan TODS’76, Mohan et al. TODS’92, Olson et al. ATC’99, ...]

Database and distributed transactions [Liskov CACM’ 88, Adya et al. ICDE’00,

Balakrishnan SOSP’13, Aguilera et al. SOSP’15, …]

Systems that provide exactly-once semantics [Frolund PODC’00, Huang & Garcia ICDE’01,

Helland CACM’12, Ramalingam & Vaswani POPL’13, Lee et al. SOSP’15]

Distributed ACID transactions vs. locks with intent

Transactions are simpler to program with, but offer less flexibility

Distributed ACID transactions vs. locks with intent

Transactions are simpler to program with, but offer less flexibility

By decoupling atomicity from isolation, locks with intent:

• Enable consistency levels from weak eventual to strong transactional

Distributed ACID transactions vs. locks with intent

Transactions are simpler to program with, but offer less flexibility

By decoupling atomicity from isolation, locks with intent:

• Enable consistency levels from weak eventual to strong transactional

• Avoid full isolation when not needed

Distributed ACID transactions vs. locks with intent

Transactions are simpler to program with, but offer less flexibility

By decoupling atomicity from isolation, locks with intent:

• Enable consistency levels from weak eventual to strong transactional

• Avoid full isolation when not needed

We provide an intents-based transactional library if they prefer the simplicity
of transactions (see our paper for examples)

Distributed ACID transactions vs. locks with intent

Transactions are simpler to program with, but offer less flexibility

By decoupling atomicity from isolation, locks with intent:

• Enable consistency levels from weak eventual to strong transactional

• Avoid full isolation when not needed

We provide an intents-based transactional library if they prefer the simplicity
of transactions (see our paper for examples)

If the cloud storage service provided a general transactional interface, locks
with intent can leverage it for exactly-once semantics, liveness, etc.

Olive’s key takeaways

Cloud applications atop cloud storage pose a new problem: what is the
right primitive for making such applications fault tolerant?

Olive’s key takeaways

Cloud applications atop cloud storage pose a new problem: what is the
right primitive for making such applications fault tolerant?

We propose two new primitives: Intents and locks with intent, which
guarantee exactly-once semantics, mutual exclusion, and eventual progress

Olive’s key takeaways

Cloud applications atop cloud storage pose a new problem: what is the
right primitive for making such applications fault tolerant?

We propose two new primitives: Intents and locks with intent, which
guarantee exactly-once semantics, mutual exclusion, and eventual progress

We propose new mechanisms: DAAL and an intent collector

Olive’s key takeaways

Cloud applications atop cloud storage pose a new problem: what is the
right primitive for making such applications fault tolerant?

We propose two new primitives: Intents and locks with intent, which
guarantee exactly-once semantics, mutual exclusion, and eventual progress

We propose new mechanisms: DAAL and an intent collector

We apply these primitives to build practical, fault-tolerant services
• Snapshots, live table re-partitioning, ACID transactions, …

