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This architecture poses an interesting problem

Reliable cloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Application processes or VMs can fail

Network can drop/reorder messages

Such failures can introduce 
inconsistencies to application’s state
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Applications have to maintain invariants over their state

Example: Consistency between application’s data and indexes

Invariants should hold even with: 

Worse: APIs of cloud storage offer little support for this
Target systems: Azure table storage, Amazon DynamoDB, etc.

Note: Other cloud storage systems (e.g., Aurora, Azure SQL) offer support for 
failure handling, but they have different scaling, or monetary cost profiles

A significant burden 

on application 

developers

Concurrent 

operations 

on cloud 

storage state

Failures of 

VMs running 

the application
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A text book solution

Reliable cloud storage systems
(Amazon DynamoDB, Azure table store, …)

Simple APIs that hide distributed machinery

Replicate each VM using Paxos

Seems wasteful: storage uses 
replication for fault tolerance

Can we leverage the reliability from the storage 

service to make applications tolerate failures?
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Highlights of our system Olive

Powerful new primitives: intents and locks with intent
• Exactly-once execution semantics

• Mutual exclusion; locked objects associated with intents

• Eventual progress

New mechanisms to implement this abstraction
• Distributed atomic affinity logging (DAAL)

• Intent collector

Built several real-world, fault-tolerant cloud services

• Live re-partitioning of tables

• Snapshotting service

• ACID transactions

• …

Automatic failure 

handling and simplify 

concurrency

Require no 

modifications to 

storage; applies 

generally

30-80% less code than 

building directly on 

cloud storage APIs



Rest of this talk

Olive’s abstractions and mechanisms

Evaluation of Olive
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Challenges for exactly-once execution

Intent =An arbitrary snippet of code:

• Cloud storage operations

• Local computation (loops, recursion, 

control flow, ...)

• Clients can fail partway

• Imperfect failure detection  multiple, 

concurrent intent executions

Goal of exactly-once execution

Code should run as if it is executed by a 

single, failure-free client
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Olive records in reliable cloud storage whenever a step 
of an intent is executed

To execute read: 

1. Execute the read normally

2. Append an entry to executionLog

step 0 objectsRead, …

step 1 objectsRead, …

Olive 

toolkit

Cloud table: executionLog

(append only)

RunIntent(code)

This will not work for executing an update 

inside an intent
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Executing an update and recording it in executionLog
must be atomic  

Step 0 objectsRead

Step 1 objectsRead

Olive 

toolkit
Insert(step, value = {…})

Cloud table: executionLogRunIntent(intentId)

k2 …

k3 …

Cloud table: appTable

Failure to record after executing  violation of exactly-once

Storage systems we target do not support cross-table atomic updates

failure

Observe: executionLog need not be a single table
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Olive introduces: Distributed atomic affinity logging 
(DAAL)

Leverage AtomicBatchUpdate for objects in the same shard or partition.

• Azure table storage, Amazon DynamoDB, MongoDB, Cassandra, etc.

Olive 

toolkit

RunIntent(intentId)

k2 …

Step x “log Update(k2, .)”

Cloud table: appTable

DAAL entry

executionLog is not a single, global table:

• A global cloud table for recording read operations, and 

• DAAL entries spread throughout



Benefits of Olive



Benefits of Olive

An Intent executes in entirety



Benefits of Olive

Without intents: “Does failing at line i violate 

any invariant?”

An Intent executes in entirety



Benefits of Olive

Without intents: “Does failing at line i violate 

any invariant?”

An Intent executes in entirety



Benefits of Olive

Without intents: “Does failing at line i violate 

any invariant?”

An Intent executes in entirety



Benefits of Olive

Without intents: “Does failing at line i violate 

any invariant?”

An Intent executes in entirety



Benefits of Olive

Without intents: “Does failing at line i violate 

any invariant?”

An Intent executes in entirety



Benefits of Olive

Without intents: “Does failing at line i violate 

any invariant?”

An Intent executes in entirety

Still, the developer must reason about 

concurrent executions of intents
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CloudTable.Lock(k)

…

CloudTable.Update(k, …)

CloudTable.Unlock(k)

Client 1

Client 2

CloudTable.Lock(k)

…

CloudTable.Update(k, …)

CloudTable.Unlock(k)

Executions will 

be serialized, no 

interleavings

Locks are dangerous, 

since clients can fail 

after acquiring a lock
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Olive composes locks with intents

Traditional lock Locks with intent

Mutual exclusion Yes Yes

Survives client failures No Yes

Overall benefit: simplifies reasoning about concurrency in 

the presence of failures (see our paper)

Locks are owned by intents, not client VMs  any client can 

unlock an object by executing the associated intent
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Implementation of Olive

Implemented 2,000 lines of C#

Abstracts the underlying storage system with a C# interface
• We write code to map that interface to different storage systems: 38 lines of 

code for Azure table store, 107 lines of code for Amazon DynamoDB

Can be extended easily to Cassandra, MongoDB, Azure DocumentDB, 
other cloud storage services, etc.



Olive’s abstractions and mechanisms

Evaluation of Olive





Evaluation questions

• Do Olive’s abstractions simplify building fault-tolerant applications?

• How do Olive-based artifacts perform relative to alternatives?
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Does Olive’s locks with intent simplify building fault-
tolerant applications?

Key takeaway: Olive reduces lines of code by 30–80%

Our paper discusses how Olive simplifies reasoning about correctness

Service Without Olive With Olive

Snapshots 987 665

OCC-transactions 2,201 408

Live table re-partitioning 2,116 474

Metric: lines of code, with and without Olive

Note: Olive’s library is 2,000 lines of code
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How do Olive-based artifacts perform relative to 
alternatives?

• Consider snapshotting service

• Baseline: database service in the cloud (Azure SQL)

• Metric: latency of cloud storage operations (Create, Read, Update)

• Olive’s artifact: uses lazy copy-on-write technique

• Olive’s underlying storage service: Azure table store (US-West)
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Performance of Olive-based snapshotting service

Baseline incurs 2X 

higher latency 

Olive incurs 5X 

higher latency 

Olive is competitive with the baseline for most operations
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Olive relates to many works

State machine replication [Schneider CSUR’90, Lamport TOCS’98, ….]

Failure recovery [Chandy & Ramamoorthy IEEE’72, Lowell et al. OSDI’00], Microreboot

[Candea et al. OSDI’04]

Leases [Gray SOSP’89], distributed locks with lease-like expiration [Burrows OSDI’06], 

revocable locks [Harris & Fraser PPoPP’05]

Write-ahead logging [Astrahan TODS’76, Mohan et al. TODS’92, Olson et al. ATC’99, ...]

Database and distributed transactions [Liskov CACM’ 88,  Adya et al. ICDE’00,  

Balakrishnan SOSP’13, Aguilera et al. SOSP’15, …]

Systems that provide exactly-once semantics [Frolund PODC’00, Huang & Garcia ICDE’01, 

Helland CACM’12, Ramalingam & Vaswani POPL’13, Lee et al. SOSP’15]
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Distributed ACID transactions vs. locks with intent

Transactions are simpler to program with, but offer less flexibility

By decoupling atomicity from isolation, locks with intent: 

• Enable consistency levels from weak eventual to strong transactional

• Avoid full isolation when not needed

We provide an intents-based transactional library if they prefer the simplicity 
of transactions (see our paper for examples)

If the cloud storage service provided a general transactional interface, locks 
with intent can leverage it for exactly-once semantics, liveness, etc.
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Olive’s key takeaways

Cloud applications atop cloud storage pose a new problem: what is the 
right primitive for making such applications fault tolerant?

We propose two new primitives: Intents and locks with intent, which 
guarantee exactly-once semantics, mutual exclusion, and eventual progress

We propose new mechanisms: DAAL and an intent collector

We apply these primitives to build practical, fault-tolerant services
• Snapshots, live table re-partitioning, ACID transactions, …


