Janus Consolidating Concurrency Con-

Consolidating Concurrency Control and Consensus for Commits under Conflicts

Shuai Mu, Lamont Nelson, Wyatt Lloyd, Jinyang Li

New York University, University of Southern California

State of the Art for Distributed Transactions Layer Concurrency Control on top of Consensus

Latency Limitation: Multiple Wide-Area Round Trips from Layering

Throughput Limitation: Conflicts Cause Aborts

Goals: Fewer Wide-Area Round Trips and Commits Under Conflicts

Best case wide-area RTTs

Establish Order Before Execution to Avoid Aborts

- Designed for transactions with static read & write-sets
- Structure a transaction as a set of stored procedure pieces
- Servers establishes consistent ordering for pieces before execution

Challenge: Distributed ordering to avoid bottleneck

Establish Order for Transactions and Replication Together to Commit in 1 Wide-area Roundtrip

Consistent ordering for transaction and replication is the same!

Layering establishes the same order twice while Janus orders once

Overview of the Janus Protocol

No Conflicts: Commit in 1 Wide-Area Round Trip

Conflicts: Commit in 2 Wide-Area RTT

Conflicts: Commit in 2 Wide-Area Round Trips

Conflicts: Commit in 2 Wide-Area Round Trip

Janus Achieves Fewer Wide-Area Round Trips and Commits Under Conflicts

- No conflicts: commit in 1 wide-area round trip
 - Pre-accept sufficient to ensure same order under failures
- Conflicts: commit in 2 wide-area round trips
 - Accept phase replicates dependencies to ensure same order under failures

Janus Paper Includes Many More Details

- Full details of execution
- Quorum sizes
- Behavior under server failure
- Behavior under coordinator (client) failure
- Design extensions to handle dynamic read & write sets

Evaluation

https://github.com/NYU-NEWS/janus

- Throughput under conflicts
- Latency under conflicts
- Overhead when there are no conflicts?
- Baselines
 - 2PL (2PC) layered on top of MultiPaxos
 - TAPIR [SOSP'15]
- Testbed: EC2 (Oregon, Ireland, Seoul)

Janus Commits under Conflicts for High Throughput

TPC-C with 6 shards, 3-way geo-replicated (9 total servers), 1 warehouse per shard.

Janus Commits under Conflicts for Low Latency

TPC-C with 6 shards, 3-way geo-replicated (9 total servers), 1 warehouse per shard.

Small Throughput Overhead under Few Conflicts

Microbenchmark with 3 shards, 3-way replicated in a single data center (9 total servers).

Related Work

Conclusion

- Two limitations for layered transaction protocols
 - Multiple wide-area round trips in the best case
 - Conflicts cause aborts
- Janus consolidates concurrency control and consensus
 - Ordering requirements are similar and can be combined!
 - Establishing a single ordering with dependency tracking enables:
 - Committing in 1 wide-area round trip in the best case
 - Committing in 2 wide-area round trips under conflicts
- Evaluation
 - Small throughput overhead when there are no conflicts
 - Low latency and good throughput even with many conflicts

Conclusion

- Two limitations for layered transaction protocols
 - Multiple wide-area round trips in the best case
 - Conflicts cause aborts
- Janus consolidates concurrency control and consensus
 - Ordering requirements are similar and can be combined!
 - Establishing a single ordering with dependency tracking enables:
 - Committing in 1 wide-area round trip in the best case
 - Committing in 2 wide-area round trips under conflicts
- Evaluation
 - Small throughput overhead when there are no conflicts
 - Low latency and good throughput even with many conflicts