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The Cluster Scheduling Problem

Jobs

Goal: match tasks to resources

to achieve

* High cluster utilization

e Fast job completion

e Guarantees (deadlines, fair
shares)

Constraints
e Scale = fast twitch

e Large and high-value deployments
e E.g., Spark, Yarn*, Mesos*, Cosmos

e Today, schedulers are simple and (as we show) performance can improve a lot
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Jobs have heterogeneous DAGs

User queries — Query optimizer — Job DAG
(Dryad, Spark-SQL, Hive,...)

 DAGs have deep and complex structures
e Task durations range from <1s to >100s
e Tasks use different amounts of resources

Legend

# Tasks Duration
1  @200s

10
1000 0s

B need shuffle
Edges can be local

Example DAG

Al =

(
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Challenges in scheduling heterogeneous DAGS

Technique | Execution Order

OPT > b — {tto} = {lo,fa, Is ]
CPSched fo >ty >t =1t >t =1,
Packers? to >t >ty > t, > t, > I

Worst-case

O(n) x OPT g tasks
O(d) x OPT d resources

CPSched cannot overlap tasks with complementary demands

Packers do not handle dependencies

[1] Tetris: Multi-resource Packing for Cluster Schedulers, SIGCOMM’14
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Challenges in scheduling heterogeneous DAGS ...

Simple heuristics lead to poor schedules
Production DAGs are roughly 50% slower than lower bounds

Simple variants of “Packing dependent tasks” are NP-hard problems

S S

Prior analytical solutions miss some practical concerns
e Multiple resources

e Complex dependencies

e Machine-level fragmentation

e Scale; Online; ...




Given an annotated DAG
and available resources,
compute a good schedule

+ practical model
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Main ideas for one DAG

ml]

time

resources

Existing schedulers:
A task is schedulable after all its parents have finished

Graphene:
Identifies troublesome tasks and places them first
Place other tasks around trouble
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How to choose troublesome tasks T7?

fr
Optimal choice is intractable (recall: NP-Hard)
Stage f
G and fragmentation
~ g Graphene: } score
> . or
< “w BuildSchedule(T) L [ R

Task duration
Pick the most compact schedule

Extensions
1) Explore different choices of T in parallel
2) Recurse
3) Memoize ...
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hich of these orders are legit?
Schedule dead-ends e .
bePbeCf /

be P bCfo x
beSbebCf

Graphene explores all orders
and avoids dead-ends

1) Since some parents and children of are already placed with T, may not be able to place

resources

time

T « TransitiveClosure (T)

2) When placing tasks in %, P, have to go backwards (place task after all children are placed)



Main ideas for one DAG

resources

resources

time

1. Identify troublesome tasks and place them first
2. Systematically place tasks to avoid dead-ends



Production clusters have

» Multiple DAGS

Computed offline schedule for

One DAG |
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Convert offline schedule to
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Main ideas for multiple DAGs

1) Convert offline schedule to priority order on tasks

2) Online, enforce schedule priority along with heuristics for
(a) Multi-resource packing
(b) “SRPT” to lower average job completion time
(c) Bounded amount of unfairness
(d) Overbooking ...

Schedule priority [ best for one DAG; overall?

may lose packing efficiency, ...

Trade-offs: Job Completion Time
Packing Efficiency

may delay job completion, ... I
We show that:

may counteract all others

Fairness

{best “perf” |bounded unfairness} ~ best “perf”
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Graphene summary & implementation

1) Offline, schedule each DAG by placing troublesome tasks first
2) Online, enforce priority over tasks along with other heuristics

E‘M Schedule Node M@
Constructor + priority order heartbeat :

E.M Schedule + bounded unfairness Task
Constructor + + overbook assignment

DAG

NM




Implementation details

* DAG annotations
e Bundling: improve schedule quality w/o killing scheduling latency

e Co-existence with (many) other scheduler features



Evaluation

* Prototype

e 200 server multi-core cluster
e TPC-DS, TPC-H, ..., GridMix to replay traces
e Jobs arrive online

e Simulations
e Traces from production Microsoft Cosmos and Yarn clusters
e Compare with many alternatives
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Conclusions

Scheduling heterogeneous DAGs well requires an
online solution that handles multiple resources
and dependencies

Graphene
e Offline, construct per-DAG schedule by placing troublesome tasks first
* Online, enforce schedule priority along with other heuristics
* New lower bound shows nearly optimal for half of the DAGs

Experiments show gains in job completion time, makespan, ...

Graphene generalizes to DAGs in other settings



When scheduler works with erroneous task profiles

1

n 0.8
O
<
O o6
—
Q
>
E 0.4 [—0.75,—0.50]
[—0.50,—0.25]
8 [£0.25, 40.50] ¢ Amount of error
0.2 [+0.50,+0.75]
0 ————
-0.2-0.1 0 0.1 0.2
/ CPSched

Fractional change in JCT



When scheduler works with erroneous task profiles

1
m 08 B :
O
< :
O 06|
| -
Q
= :
u? 0.4 | [—0.75, —0.50] mhe
[—0.50,—0.25]
8 g [£0.25, 40.50] ¢ Amount of error
0.2 [+0.50,+0.75]
0 ro
-0.2-0.1 0 0.1 0.2
/ CPSched

Fractional change in JCT



When scheduler works with erroneous task profiles

wn
O
<
A
—
Q
>
u? [—0.75,—0.50] =l
[—0.50,—0.25]
8 [£0.25, 40.50] ¢ Amount of error
[4+0.50,40.75]
0 s | ol i i
-0.2-0.1 0 0.1 0.2 -0.2-0.1 0 0.1 0.2
/ CPSched Graphene

Fractional change in JCT



When scheduler works with erroneous task profiles

wn

O

<

A

—

Q

>

E 0.75,-0.50] 4
—0.50,—0.25]

8 1£0.25,40.50] ¢ Amount of error
+050 +0.75]

-0.2-0.1 0 0.1 0.2 -0.2-0.1 0 0.1 0.2 -0.2-0.1 O 0.1 0.2
/ CPSched Graphene Tetris

Fractional change in JCT



DAG annotations

G uses per-stage average duration and demands of {cpu, mem, net. disk}

1) Almost all frameworks have user’s annotate cpu and mem
2) Recurring jobs! have predictable profiles (correcting for input size)
3) Ongoing work on building profiles for ad-hoc jobs

e Sample and project?
* Program analysis?

[1] RoPE, NSDI'12; ...
[2] Perforator, SOCC’16; ...
[3] SPEED, POPL09; ...



Using Graphene to schedule other DAGS
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CDF (Fraction of DAGSs

Characterizing DAGs in Cosmos clusters
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Characterizing DAGs in Cosmos clusters — 2
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Runtime of production DAGs
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Job completion times on different workloads

50" percentile 75! percentile
Workload G T+C T+T G T+C T+T
TPC-DS 27.8 4.1 6.5 45.7 8.9 16.6
TPC-H 30.5 3.8 8.9 48.3 7.7 15.0
BigBench 25.0 6.4 6.2 33.3 21.7 18.5
E-Hive 19.0 1.0 5.8 29.7 4.5 14.2

G stands for GRAPHENE. T+C and T+T denote Tez + CP and Tez + Tetris
respectively (see §7.1). The improvements are relative to Tez.



Workload Tez+CP Tez+Tetris (GJRAPHENE

Ma kespa N TPC-DS +2.1% +8.2% +30.9%

TPC-H +4.3% +9.6% +27.5%
Workload Scheme 2Q vs. 1Q Jain’s fairness index
Perf. Gap 10S 60s 2408
. Tez —13% 0.82 0.86 0.88
Fa ITNESS TPC-DS Tez+DRF —12% 0.85 0.89 0.90
Tez+Tetris —10% 0.77 0.81 0.92
GRAPHENE +2% 0.72 0.83  0.89




Comparison with other alternatives

th

th

th

th

25 50 /5 90
GRAPHENE . 25 57 74
Random —2 0 1 4
Crit Path F%t cpu/mem —2 0 2 1
Fit all 1 4 13 16
Tetris Fit all 0 7 29 42
Strip Part. Fit all 0 1 12 27
Coffman-Graham. F%t + 0 ! L2 26
Fit cpu/mem -2 0 0 2




Online
Pseudocode

Func: FindAppropriateTasksForMachine:
Input: m: vector of available resources at machine; J: set of jobs

with task details{tjy ration> tdemands> tpriScore}; deficit:
counters for fairness;
Parameters: x: unfairness bound; rp: remote penalty
Output: S, the set of tasks to be allocated on the machine
S« g
while true do
foreach task t do
{pScore,,oScore;} + {0,0}
rPenalty, « t is locality sensitive ? rp: 1
if t7,,ands Sm// fits? then
pScore, < (m-ty.ands) TPenalty,// dot product

else

/I what-if analysis: “overbook or wait”,

Vtasks t" affected by f running at m, let before(t’),
after(t’) be expected completion times before and
after placing t at m

benefit = nextSchedOpp + f, ration — 2L ter(?)

cosSt = Yo ff tasks ¢/ (after(t”) —before(t'))
if benefit > cost then oScore; = benefit — cost;

job j3t, STPt; < Zpending uej “duration * ‘udemands|

perfScore, « tpriScore {pScoret, oScoret}— HsTpt;

fest argmax{perfScore,|t}// task with highest perf score
if tbe“ = & then break // no new task can be scheduled on this
machine;

¢’ < jobgroup with highest deficit counter

best

if deficit s > xC then ¢ « argmax{perfScore,|te g'};

best
best
]o+

m < [m ~temands

deficity < deficitg+

S« Sut

factor(thSt ) { fairShare,—1 te€ jobgroup g

demands fairShare, otherwise
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