Packing Tasks with Dependencies

Robert Grandl, Srikanth Kandula,
Sriram Rao, Aditya Akella, Janardhan Kulkarni

.. Microsoft WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

The Cluster Scheduling Problem

Jobs

Goal: match tasks to resources

The Cluster Scheduling Problem

Jobs

Goal: match tasks to resources

The Cluster Scheduling Problem

Jobs

Goal: match tasks to resources

to achieve

e High cluster utilization

e Fast job completion

e Guarantees (deadlines, fair
shares)

The Cluster Scheduling Problem

Jobs

Goal: match tasks to resources

to achieve

e High cluster utilization

e Fast job completion

e Guarantees (deadlines, fair
shares)

Constraints
e Scale = fast twitch

The Cluster Scheduling Problem

Jobs

Goal: match tasks to resources

to achieve

e High cluster utilization

e Fast job completion

e Guarantees (deadlines, fair
shares)

Constraints
e Scale = fast twitch

e Large and high-value deployments
e E.g., Spark, Yarn*, Mesos*, Cosmos

The Cluster Scheduling Problem

Jobs

Goal: match tasks to resources

to achieve

* High cluster utilization

e Fast job completion

e Guarantees (deadlines, fair
shares)

Constraints
e Scale = fast twitch

e Large and high-value deployments
e E.g., Spark, Yarn*, Mesos*, Cosmos

e Today, schedulers are simple and (as we show) performance can improve a lot

2

Jobs have heterogeneous DAGs

User queries — Query optimizer — Job DAG
(Dryad, Spark-SQL, Hive,...)

Jobs have heterogeneous DAGs

User queries — Query optimizer — Job DAG
(Dryad, Spark-SQL, Hive,...)

Legend

Tasks Duration
1 @200s

10
1000 0s

B need shuffle
Edges can be local

Example DAG

Jobs have heterogeneous DAGs

Example DAG

User queries — Query optimizer — Job DAG r Q

(Dryad, Spark-SQL, Hive,...)

Legend

Tasks Duration
1 @200s

10
1000 0s

B need shuffle
Edges can be local

Jobs have heterogeneous DAGs

User queries — Query optimizer — Job DAG
(Dryad, Spark-SQL, Hive,...)

 DAGs have deep and complex structures
e Task durations range from <1s to >100s
e Tasks use different amounts of resources

Legend

Tasks Duration
1 @200s

10
1000 0s

B need shuffle
Edges can be local

Example DAG

Al =

(

O

Challenges in scheduling heterogeneous DAGS

Challenges in scheduling heterogeneous DAGS

Technique | Execution Order | Time
OPT |t t, = {t,,to} = {to,ta,t5} | T

Challenges in scheduling heterogeneous DAGS

Technique | Execution Order Time
OPT f,— 1, — {fsto}r = {fo,arls) T
CPSched fo >t > t, >t >t =1, 3T

Challenges in scheduling heterogeneous DAGS

Technique | Execution Order Time
OPT f,— 1, — {fsto}r = {fo,arls) T
CPSched fo >t >, >t >t =1, 3T
3:
0.85 ¢

Challenges in scheduling heterogeneous DAGS

Technique | Execution Order Time

OPT t1—>t3—>{t4,to}—>{to,t2,t5} T

CPSched fo >t >, >t >t =1, 3T

Packers? to >t >ty > t, > t, > I 3T
CPSched cannot overlap tasks with complementary demands -

3:

[1] Tetris: Multi-resource Packing for Cluster Schedulers, SIGCOMM’14

Challenges in scheduling heterogeneous DAGS

Technique | Execution Order

OPT > b — {tto} = {lo,fa, Is]
CPSched fo >ty >t =1t >t =1,
Packers? to >t >ty > t, > t, > I

CPSched cannot overlap tasks with complementary demands

Packers do not handle dependencies

[1] Tetris: Multi-resource Packing for Cluster Schedulers, SIGCOMM’14

Challenges in scheduling heterogeneous DAGS

Technique | Execution Order

OPT > b — {tto} = {lo,fa, Is]
CPSched fo >ty >t =1t >t =1,
Packers? to >t >ty > t, > t, > I

Worst-case

O(n) x OPT g tasks
O(d) x OPT d resources

CPSched cannot overlap tasks with complementary demands

Packers do not handle dependencies

[1] Tetris: Multi-resource Packing for Cluster Schedulers, SIGCOMM’14

Challenges in scheduling heterogeneous DAGS ...

Challenges in scheduling heterogeneous DAGS ...

1. Simple heuristics lead to poor schedules

Challenges in scheduling heterogeneous DAGS ...

1. Simple heuristics lead to poor schedules

2. Production DAGs are roughly 50% slower than lower bounds

Challenges in scheduling heterogeneous DAGS ...

1. Simple heuristics lead to poor schedules

2. Production DAGs are roughly 50% slower than lower bounds

3. Simple variants of “Packing dependent tasks” are NP-hard problems

Challenges in scheduling heterogeneous DAGS ...

Simple heuristics lead to poor schedules
Production DAGs are roughly 50% slower than lower bounds

Simple variants of “Packing dependent tasks” are NP-hard problems

S S

Prior analytical solutions miss some practical concerns

Challenges in scheduling heterogeneous DAGS ...

Simple heuristics lead to poor schedules
Production DAGs are roughly 50% slower than lower bounds

Simple variants of “Packing dependent tasks” are NP-hard problems

S S

Prior analytical solutions miss some practical concerns
e Multiple resources

e Complex dependencies

e Machine-level fragmentation

e Scale; Online; ...

Given an annotated DAG
and available resources,
compute a good schedule

+ practical model

Main ideas for one DAG

O

WY/ D

¥ —

W\ XV Z> 8

Se S &)
S 4 Ol _ R
< =" time

Existing schedulers:
A task is schedulable after all its parents have finished

Main ideas for one DAG

Na
7" }/ g
L\ Y » 8 O
Se S & ol ®®
o & ol%®
< =" time

Existing schedulers:
A task is schedulable after all its parents have finished

Main ideas for one DAG

Na
RN @
» S
VLY Z> 8 O
Se S & ol ®®
o & ol%®
< =" time

Existing schedulers:
A task is schedulable after all its parents have finished

Graphene:
Identifies troublesome tasks and places them first

Main ideas for one DAG

N
R4 8
¥ —
%/v » v » 3 I
< 0
S Ol __ R
< = time

Existing schedulers:
A task is schedulable after all its parents have finished

Graphene:
Identifies troublesome tasks and places them first

Main ideas for one DAG

ml]

time

resources

Existing schedulers:
A task is schedulable after all its parents have finished

Graphene:
Identifies troublesome tasks and places them first
Place other tasks around trouble

Does placing troublesome tasks first help?

Revisit the example

Does placing troublesome tasks first help?

Revisit the example 8

If troublesome tasks o long-running tasks, Graphene = OPT

Does placing troublesome tasks first help?

Revisit the example

If troublesome tasks o long-running tasks, Graphene = OPT

Does placing troublesome tasks first help?

Revisit the example

If troublesome tasks o long-running tasks, Graphene = OPT

How to choose troublesome tasks T7?

frag > f

How to choose troublesome tasks T7?

Optimal choice is intractable (recall: NP-Hard)

frag > f

How to choose troublesome tasks T7?

A

Optimal choice is intractable (recall: NP-Hard)
Stage

.f —
fragmentation |
frag = f score |

£
Task duration

How to choose troublesome tasks T7?

A
11
Optimal choice is intractable (recall: NP-Hard)
Stage -f— —

and fragmentation |

Graphene: } score |
- or

Bui1dSchedule(T) K

>
Task duration

How to choose troublesome tasks T7?

A

fr
Optimal choice is intractable (recall: NP-Hard)
Stage f
G and fragmentation
~ g Graphene: } score
> . or
< “w BuildSchedule(T) L [R

Task duration
Pick the most compact schedule

How to choose troublesome tasks T7?

fr
Optimal choice is intractable (recall: NP-Hard)
Stage f
G and fragmentation
~ g Graphene: } score
> . or
< “w BuildSchedule(T) L [R

Task duration
Pick the most compact schedule

Extensions
1) Explore different choices of T in parallel
2) Recurse
3) Memoize ...

Schedule dead-ends

¥V ¥y

-

N

NRWA /@ 8
S O
»/v » /v = S

Ei ‘ S Q 5 8
& ; L

time

Schedule dead-ends

¥y ¥ ¥
. N
NTRWA e)
g W ¥ O
»/v » /v = S
? ‘ S ﬁ 5 8
< < o

time

Schedule dead-ends

2 4 s
PRy O

ol O
LN\ KV >
<0 <@ § > L
o - S

time

1) Since some parents and children of are already placed with T, may not be able to place

Schedule dead-ends

2 4 s
PRy O

ol O
L\ KV -
<0 <@ § > |HL||
o ° S

time

1) Since some parents and children of are already placed with T, may not be able to place

T « TransitiveClosure (T)

Schedule dead-ends

¥ ¥4 ¥ s
PR Y @
¥ LK i O
%/V 1's » > L
< 3 @ S O
. ¢ 9o 4

time

1) Since some parents and children of are already placed with T, may not be able to place

T « TransitiveClosure (T)

Schedule dead-ends

¥ ¥4 s
PRy O

Vel O H
L\ XY >
%o So & 3
S < O

time

1) Since some parents and children of are already placed with T, may not be able to place

T « TransitiveClosure (T)

Schedule dead-ends

¥V ¥y

N

PR O
LY O
ANN'S >
%o So & 3
o & %
| -

time

1) Since some parents and children of are already placed with T, may not be able to place

T « TransitiveClosure (T)

2) When placing tasks in %, P, have to go backwards (place task after all children are placed)

Schedule dead-ends

resources

time

1) Since some parents and children of are already placed with T, may not be able to place

T « TransitiveClosure (T)

2) When placing tasks in %, P, have to go backwards (place task after all children are placed)

Schedule dead-ends

resources

time

1) Since some parents and children of are already placed with T, may not be able to place

T « TransitiveClosure (T)

2) When placing tasks in %, P, have to go backwards (place task after all children are placed)

hich of these orders are legit?
Schedule dead-ends e .
bePbeCf

bePbCfo
beSbebCf

resources

time

1) Since some parents and children of are already placed with T, may not be able to place

T « TransitiveClosure (T)

2) When placing tasks in %, P, have to go backwards (place task after all children are placed)

hich of these orders are legit?
Schedule dead-ends e .
bePbeCf /

be P bCfo x
beSbebCf

resources

time

1) Since some parents and children of are already placed with T, may not be able to place

T « TransitiveClosure (T)

2) When placing tasks in %, P, have to go backwards (place task after all children are placed)

hich of these orders are legit?
Schedule dead-ends e .
bePbeCf /

be P bCfo x
beSbebCf

Graphene explores all orders
and avoids dead-ends

1) Since some parents and children of are already placed with T, may not be able to place

resources

time

T « TransitiveClosure (T)

2) When placing tasks in %, P, have to go backwards (place task after all children are placed)

Main ideas for one DAG

resources

resources

time

1. Identify troublesome tasks and place them first
2. Systematically place tasks to avoid dead-ends

Production clusters have

» Multiple DAGS

Computed offline schedule for

One DAG |

Convert offline schedule to
oriority order on tasks

Convert offline schedule to
priority order on tasks

Convert offline schedule to
oriority order on tasks

Convert offline schedule to
oriority order on tasks

t, > tz3 =ty = {to, by, t5}

Convert offline schedule to
oriority order on tasks

Offline

tl — t3 — t4 — {tO) tz, tS} m—

Runtime 4%

ti[ne

Convert offline schedule to
oriority order on tasks

Offline

tl — t3 — t4 — {tO) tz, tS} m—

Runtime 4%

1 time

Convert offline schedule to
oriority order on tasks

Rl B il B B8 1]3]4 5] 137’ 5’ L]

Offline

tl — t3 — t4 — {tO) tz, tS} m—

Runtime 4%

time

Convert offline schedule to
oriority order on tasks

Rl B il B B8 1]3]4 5] 137’ 5’ L]

Offline

tl — t3 — t4 — {tO) tz, tS} m—

Runtime 4%

EBE time

Convert offline schedule to
oriority order on tasks

Rl B il B B8 1]3]4 5] 137’ 5’ L]

Offline

tl — t3 — t4 — {tO) tz, tS} m—

Runtime 4%

5
a2
1)1{3]31|4 0 time

Convert offline schedule to
oriority order on tasks

Rl B il B B8 1]3]4 5] 137’ 5’ L]

Offline

tl — t3 — t4 — {tO) tz, tS} m—

Runtime 4%

5 |)
L 2 2

AmEaE O o JJ time

Convert offline schedule to
oriority order on tasks

Rl B il B B8 1]3]4 5] 137’ 5’ L]

Offline

tl — t3 — t4 — {tO) tz, tS} m—

Runtime 4%

5 |)
L 2 2

OEEEE o o) time
2T

Convert offline schedule to
oriority order on tasks

Sl gl Bug! BaY * 1]3]4 5] 137’ 5’ L]

Offline

tl — t3 — t4 — {tO) tz, tS} m—

Runtime 4%

5 1 ’
£ 2 E

OEEEE o o) time
2T

K 5
CPSched (I © (BBE4 5 1@-P 2)

3T AT

Main ideas for multiple DAGs

1) Convert offline schedule to priority order on tasks

Main ideas for multiple DAGs

1) Convert offline schedule to priority order on tasks

2) Online, enforce schedule priority along with heuristics for
(a) Multi-resource packing
(b) “SRPT” to lower average job completion time

(c) Bounded amount of unfairness
(d) Overbooking ...

Main ideas for multiple DAGs

1) Convert offline schedule to priority order on tasks

2) Online, enforce schedule priority along with heuristics for
(a) Multi-resource packing
(b) “SRPT” to lower average job completion time

(c) Bounded amount of unfairness
(d) Overbooking ...

Main ideas for multiple DAGs

1) Convert offline schedule to priority order on tasks

2) Online, enforce schedule priority along with heuristics for

(a) Multi-resource packing
(b) “SRPT” to lower average job completion time
(c) Bounded amount of unfairness

(d) Overbooking ...

[best for one DAG; overall?

Schedule priority

may lose packing efficiency, ...
Job Completion Time

Trade-offs: N
Packing Efficiency

may delay job completion, ... I '
Fairness may counteract all others

Main ideas for multiple DAGs

1) Convert offline schedule to priority order on tasks

2) Online, enforce schedule priority along with heuristics for
(a) Multi-resource packing
(b) “SRPT” to lower average job completion time
(c) Bounded amount of unfairness
(d) Overbooking ...

Schedule priority [best for one DAG; overall?

may lose packing efficiency, ...

Trade-offs: Job Completion Time
Packing Efficiency

may delay job completion, ... I
We show that:

may counteract all others

Fairness

{best “perf” |bounded unfairness} ~ best “perf”

Graphene summary & implementation

1) Offline, schedule each DAG by placing troublesome tasks first
2) Online, enforce priority over tasks along with other heuristics

Graphene summary & implementation

1) Offline, schedule each DAG by placing troublesome tasks first
2) Online, enforce priority over tasks along with other heuristics

Vo

Welas

DAG

¢

AM

AM

&

RM

Node NM® -

heartbeat

) |,:

Task
assignment

NM|®-

Graphene summary & implementation

1) Offline, schedule each DAG by placing troublesome tasks first
2) Online, enforce priority over tasks along with other heuristics

E‘M Schedule
Constructor
DAG :

E.M Schedule
Constructor

DAG

AM

AM

) o'
&

RM

Node NM® -

heartbeat

) |,:

Task
assignment

NM|@ -

Graphene summary & implementation

1) Offline, schedule each DAG by placing troublesome tasks first
2) Online, enforce priority over tasks along with other heuristics

E‘M Schedule Node M@
Constructor + priority order heartbeat :

E.M Schedule + bounded unfairness Task
Constructor + + overbook assignment

DAG

NM

Implementation details

* DAG annotations
e Bundling: improve schedule quality w/o killing scheduling latency

e Co-existence with (many) other scheduler features

Evaluation

* Prototype

e 200 server multi-core cluster
e TPC-DS, TPC-H, ..., GridMix to replay traces
e Jobs arrive online

e Simulations
e Traces from production Microsoft Cosmos and Yarn clusters
e Compare with many alternatives

Results - 1

o o o
~ O 0

Fraction of DAGs
(-
N

0

[20K DAGs from Cosmos]

1.5X 2X

|

-20

0 20 40

Reduction in job ©

60 80
uration [%]

100

Results - 1
[20K DAGs from Cosmos]

1 - _ . . _
30 FRan%ackmg/
<
206 5
| | ~_Packing + Deps.
C
004 Lower bound
-

O

©0.2

H- 1.5X 2X
) J |

20 0 20 40 60 80
Reduction in job duration [%]

100

Results - 2

[200 jobs from TPC-DS, 200 server cluster]

700

Running tasks

100 S : o

| | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]

160

Results - 2 e

100 = | m——

Utilization [%]

[200 jobs from TPC-DS, 200 server cluster] RN o VA
/ 20!\’""'}‘1’ I /UW‘ C;sk Write
700 0! etwor ea ; ‘

0 1000 2000 . 3000 4000 5000 . 6000
ez + Pack +Deps Time [s]
&n 600 -
140
% 500 \'\E 120
= 100
; 400 § W
o)
- = 60
‘E 300 5 40
C 20
: 200 pl
0 1000 2000 3000 4000 5000 6000 7000
o \ Time [s]
100
%] Disk Read !
D I I ' 140 - Memo| / etwork Read i
0 1000 2000 3000 4000 5000 6000 7000 8000 — 120
: <
Time [s] Ll _*'AT _
o '
£ wl -
g | \
S 60| = b
5 40 N ‘.I N
20 ' : ‘_
0.CPU DlskWr|te

!
0 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]

Conclusions

Scheduling heterogeneous DAGs well requires an
online solution that handles multiple resources
and dependencies

Conclusions

Scheduling heterogeneous DAGs well requires an
online solution that handles multiple resources
and dependencies

Graphene
e Offline, construct per-DAG schedule by placing troublesome tasks first
* Online, enforce schedule priority along with other heuristics
* New lower bound shows nearly optimal for half of the DAGs

Conclusions

Scheduling heterogeneous DAGs well requires an
online solution that handles multiple resources
and dependencies

Graphene
e Offline, construct per-DAG schedule by placing troublesome tasks first
* Online, enforce schedule priority along with other heuristics
* New lower bound shows nearly optimal for half of the DAGs

Experiments show gains in job completion time, makespan, ...

Conclusions

Scheduling heterogeneous DAGs well requires an
online solution that handles multiple resources
and dependencies

Graphene
e Offline, construct per-DAG schedule by placing troublesome tasks first
* Online, enforce schedule priority along with other heuristics
* New lower bound shows nearly optimal for half of the DAGs

Experiments show gains in job completion time, makespan, ...

Graphene generalizes to DAGs in other settings

When scheduler works with erroneous task profiles

1

n 0.8
O
<
O o6
—
Q
>
E 0.4 [—0.75,—0.50]
[—0.50,—0.25]
8 [£0.25, 40.50] ¢ Amount of error
0.2 [+0.50,+0.75]
0 ————
-0.2-0.1 0 0.1 0.2
/ CPSched

Fractional change in JCT

When scheduler works with erroneous task profiles

1
m 08 B :
O
< :
O 06
Q
= :
u? 0.4 | [—0.75, —0.50] mhe
[—0.50,—0.25]
8 g [£0.25, 40.50] ¢ Amount of error
0.2 [+0.50,+0.75]
0 ro
-0.2-0.1 0 0.1 0.2
/ CPSched

Fractional change in JCT

When scheduler works with erroneous task profiles

wn
O
<
A
—
Q
>
u? [—0.75,—0.50] =l
[—0.50,—0.25]
8 [£0.25, 40.50] ¢ Amount of error
[4+0.50,40.75]
0 s | ol i i
-0.2-0.1 0 0.1 0.2 -0.2-0.1 0 0.1 0.2
/ CPSched Graphene

Fractional change in JCT

When scheduler works with erroneous task profiles

wn

O

<

A

—

Q

>

E 0.75,-0.50] 4
—0.50,—0.25]

8 1£0.25,40.50] ¢ Amount of error
+050 +0.75]

-0.2-0.1 0 0.1 0.2 -0.2-0.1 0 0.1 0.2 -0.2-0.1 O 0.1 0.2
/ CPSched Graphene Tetris

Fractional change in JCT

DAG annotations

G uses per-stage average duration and demands of {cpu, mem, net. disk}

1) Almost all frameworks have user’s annotate cpu and mem
2) Recurring jobs! have predictable profiles (correcting for input size)
3) Ongoing work on building profiles for ad-hoc jobs

e Sample and project?
* Program analysis?

[1] RoPE, NSDI'12; ...
[2] Perforator, SOCC’16; ...
[3] SPEED, POPL09; ...

Using Graphene to schedule other DAGS

350
240

530

020

1 2 3 4
DAG size (100x)
(a) Distributed Build Systems: (b) Request-response workflows:

Compilation time

—50

A ?
| A A

A_ ____________ AA _______ ______________ .
- A
o

0 1 2 3

DAG size (100x)

Query latency

CDF (Fraction of DAGSs

Characterizing DAGs in Cosmos clusters

™

V . |

(D) :

= .0 |

T |

> 4

c ;

N — 0.2 !___ j.”-‘ '''''' Y, | < ‘ .

2 g = ¥ #Barriers —-w-—
O Ll Y= 2> N N R S S S R B A R R N

0.1 1 10 100 1000

Value

Characterizing DAGs in Cosmos clusters — 2

¥ x

n

Uy 0.8

= o |

Y— 5 :

O |

(- .

O = 0.4

+H 5 0.2 y
© = g Out degree --o--
L O I_._._I_L N J.J_IJ S S S p I I_I_‘_ ool Ll Lli N _.J_I._.J.J_L.I_.I_‘

0.1 1 10 100 1000
Value

Runtime of production DAGs

0 0.2 0.4 0.6 0.8
Gap = 1 - (Measure / DAG runtime)

1_ """"""""""""""""""""""""" ¥
B x Gap from NewlLB e | = o
<DE V 0.8 - Gap from TWork - N 4 5’ ;,@"" | " o
.- 0. I
- § 0.6 | Gap from CPLength - ~ i A
Sc 04
Oz 0.2
= 0

Job completion times on different workloads

50" percentile 75! percentile
Workload G T+C T+T G T+C T+T
TPC-DS 27.8 4.1 6.5 45.7 8.9 16.6
TPC-H 30.5 3.8 8.9 48.3 7.7 15.0
BigBench 25.0 6.4 6.2 33.3 21.7 18.5
E-Hive 19.0 1.0 5.8 29.7 4.5 14.2

G stands for GRAPHENE. T+C and T+T denote Tez + CP and Tez + Tetris
respectively (see §7.1). The improvements are relative to Tez.

Workload Tez+CP Tez+Tetris (GJRAPHENE

Ma kespa N TPC-DS +2.1% +8.2% +30.9%

TPC-H +4.3% +9.6% +27.5%
Workload Scheme 2Q vs. 1Q Jain’s fairness index
Perf. Gap 10S 60s 2408
. Tez —13% 0.82 0.86 0.88
Fa ITNESS TPC-DS Tez+DRF —12% 0.85 0.89 0.90
Tez+Tetris —10% 0.77 0.81 0.92
GRAPHENE +2% 0.72 0.83 0.89

Comparison with other alternatives

th

th

th

th

25 50 /5 90
GRAPHENE . 25 57 74
Random —2 0 1 4
Crit Path F%t cpu/mem —2 0 2 1
Fit all 1 4 13 16
Tetris Fit all 0 7 29 42
Strip Part. Fit all 0 1 12 27
Coffman-Graham. F%t + 0 ! L2 26
Fit cpu/mem -2 0 0 2

Online
Pseudocode

Func: FindAppropriateTasksForMachine:
Input: m: vector of available resources at machine; J: set of jobs

with task details{tjy ration> tdemands> tpriScore}; deficit:
counters for fairness;
Parameters: x: unfairness bound; rp: remote penalty
Output: S, the set of tasks to be allocated on the machine
S« g
while true do
foreach task t do
{pScore,,oScore;} + {0,0}
rPenalty, « t is locality sensitive ? rp: 1
if t7,,ands Sm// fits? then
pScore, < (m-ty.ands) TPenalty,// dot product

else

/I what-if analysis: “overbook or wait”,

Vtasks t" affected by f running at m, let before(t’),
after(t’) be expected completion times before and
after placing t at m

benefit = nextSchedOpp + f, ration — 2L ter(?)

cosSt = Yo ff tasks ¢/ (after(t”) —before(t'))
if benefit > cost then oScore; = benefit — cost;

job j3t, STPt; < Zpending uej “duration * ‘udemands|

perfScore, « tpriScore {pScoret, oScoret}— HsTpt;

fest argmax{perfScore,|t}// task with highest perf score
if tbe“ = & then break // no new task can be scheduled on this
machine;

¢’ < jobgroup with highest deficit counter

best

if deficit s > xC then ¢ « argmax{perfScore,|te g'};

best
best
]o+

m < [m ~temands

deficity < deficitg+

S« Sut

factor(thSt) { fairShare,—1 te€ jobgroup g

demands fairShare, otherwise

	Packing Tasks with Dependencies
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	 Jobs have heterogeneous DAGs
	 Jobs have heterogeneous DAGs
	 Jobs have heterogeneous DAGs
	 Jobs have heterogeneous DAGs
	Challenges in scheduling heterogeneous DAGs
	Challenges in scheduling heterogeneous DAGs
	Challenges in scheduling heterogeneous DAGs
	Challenges in scheduling heterogeneous DAGs
	Challenges in scheduling heterogeneous DAGs
	Challenges in scheduling heterogeneous DAGs
	Challenges in scheduling heterogeneous DAGs
	Challenges in scheduling heterogeneous DAGs …
	Challenges in scheduling heterogeneous DAGs …
	Challenges in scheduling heterogeneous DAGs …
	Challenges in scheduling heterogeneous DAGs …
	Challenges in scheduling heterogeneous DAGs …
	Challenges in scheduling heterogeneous DAGs …
	Given an annotated DAG �and available resources, �compute a good schedule
	Main ideas for one DAG
	Main ideas for one DAG
	Main ideas for one DAG
	Main ideas for one DAG
	Main ideas for one DAG
	Does placing troublesome tasks first help?
	Does placing troublesome tasks first help?
	Does placing troublesome tasks first help?
	Does placing troublesome tasks first help?
	How to choose troublesome tasks T?
	How to choose troublesome tasks T?
	How to choose troublesome tasks T?
	How to choose troublesome tasks T?
	How to choose troublesome tasks T?
	How to choose troublesome tasks T?
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Schedule dead-ends
	Main ideas for one DAG
	One DAG Multiple DAGs
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Convert offline schedule to �priority order on tasks
	Main ideas for multiple DAGs
	Main ideas for multiple DAGs
	Main ideas for multiple DAGs
	Main ideas for multiple DAGs
	Main ideas for multiple DAGs
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Implementation details
	Evaluation
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Scheduling heterogeneous DAGs well requires an online solution that handles multiple resources and dependencies�
	Scheduling heterogeneous DAGs well requires an online solution that handles multiple resources and dependencies�
	Scheduling heterogeneous DAGs well requires an online solution that handles multiple resources and dependencies�
	Scheduling heterogeneous DAGs well requires an online solution that handles multiple resources and dependencies�
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	DAG annotations
	Using Graphene to schedule other DAGs
	Characterizing DAGs in Cosmos clusters
	Characterizing DAGs in Cosmos clusters – 2
	Runtime of production DAGs
	Job completion times on different workloads
	Makespan
	Comparison with other alternatives
	Online Pseudocode

