Unobservable communication
over fully untrusted infrastructure

Sebastian Angel Srinath Setty
UT Austin and NYU Microsoft Research

Communication is possible because of many

service providers

& atat Level®)

Service providers

amazon [Outlook

webservices™

4% slack ©TEXAS

T

These providers can observe all communication

Messi - B: “How serious is my injury?”]

Encryption can hide the message

Messi =2 B: NTIUEM2{8j6dMLeL9V0=]

Content of the message is hidden

But metadata remains

Metadata is still visible to service providers

l

Messi - B: NTIUEM2f8j6dMLeL9VO=]

But metadata remains

Metadata is still visible to service providers

l

Messi - B: NTIUEM2f8j6dMLeL9VO=]

Metadata can be as sensitive as data

“telephone metadata... can be used to determine highly

sensitive traits.”
[Mayer, Mutchler, and Mitchell, PNAS 2016]

General Hayden: “We kill people based on metadata.”
(former NSA and CIA director)
[David Cole, NYR Daily 2014]

Objective: adversary cannot determine who is
talking to whom, or if anybody is talking at all

0000

oooooo

Atalks to C Atalks to B A talks to nobody (“L")

Objective: adversary cannot determine who is
talking to whom, or if anybody is talking at all

0000

oooooo

Atalks to C Atalks to B A talks to nobody (“L")

Variants of this objective date back to the 80s [Chaum, CACM ‘81]

Many systems already meet this objective!

« Onion routing (e.g., Tor [USENIX Sec ‘04])

=B

L0

-

>!

Servers remove one layer of encryption
and forward messages to the next hop

Many systems already meet this objective!

* Onion routing (e.g., Tor [USENIX Sec ‘04])

Strong assumptions on which parts of the infrastructure can be compromised

>E

=

M|
o

Servers remove one layer of encryption
and forward messages to the next hop

Many systems already meet this objective!

* Onion routing (e.g., Tor [USENIX Sec ‘04])

Supports millions of users but tolerates few compromises

Many systems already meet this objective!

* Mix networks (e.g., Vuvuzela [SOSP '13])

SRR
S| —

Servers shuffle traffic, add noise (cover traffic), remove layers of encryption, etc.

Many systems already meet this objective!

« Mix networks (e.g., Vuvuzela [SOSP '15])

Supports 2 million users but requires one correct server

Many systems already meet this objective!

o

* DC Networks (e.g., Dissent [CCS "10]) [«— L[— [

N~—"

Peer-to-peer network

Many systems already meet this objective!

* DC Networks (e.g., Dissent [CCS "10])

Supports dozens of users but tolerates full infrastructure compromise

Many systems already meet this objective!

* Onion routing (e.g., Tor [USENIX Sec ‘04])

Supports millions of users but tolerates few compromises

« Mix networks (e.g., Vuvuzela [SOSP '15])

Supports 2 million users but requires one correct server

* DC Networks (e.g., Dissent [CCS "10])

Supports dozens of users but tolerates full infrastructure compromise

We propose Pung

* Provably hides metadata even Iif all infrastructure iIs compromised

e Supports point-to-point and group communication

D e D

C Point-to-point Group communication

* Processes >100K messages/min with 4 servers (scales linearly with # servers)

In the rest of this talk we answer

* How does Pung work?

* What Is the performance of Pung?

Clients use a key value store to communicate

T

Clients use a key value store to communicate

Put(B, Encrypted Msg)

T

Clients use a key value store to communicate

Put(B, Encrypted Msg)

Encrypted Msg

Get(B)

T

Pung must hide a lot of metadata

 Participants of a conversation
 Message size

* Time of a message being sent
* Time of message delivery

* Frequency of communication

Pung must hide a lot of metadata

» Participants of a conversation
 Message size

* Time of a message being sent
* Time of message delivery

* Frequency of communication

Put request parameter leaks recipient

Put(B, Encrypted Msg)

T

Encrypted Msg

Put request parameter leaks recipient

Opaque label no longer leak recipient’s identity!

&~
Put(lll, Encrypted Msg)

T

Encrypted Msg

Put + Get in combination leak metadata!

T

Put(ll, Encrypted Msg)

Put from A and Get from B can
be associated because they
Encrypted Msg have the same inputs/outputs
= Ais talking to B

Solution: break association of Put and Get

Put(lll, Encrypted Msg)

Get(Q@)

Q@ encodes B

i

Solution: break association of Put and Get

Put(lll, Encrypted Msg)

i

Q@ encodes B
A @ encodes “Encrypted Msg”

Solution:

T

break association of Put and Get

Put(ll, Encrypted Msg)

Put and Get cannot be
associated since they don't
share anything distinguishable

Q@ encodes
A @ encodes “Encrypted Msg”

Server can answer the Query obliviously

Qe
- 4

Get(Q@) B | D+6KvjStEhaV0g=

—
E 4—2 — | B | DH72Eytgk14dtQ=

Ag B | Encrypted Msg

Q@ encodes H - \

Al
A@ encodes “Encrypted Msg”

Server can answer the Query obliviously

Private information retrieval (PIR) hides the access pattern by requiring the
server to perform cryptographic operations over every single entry

Qg
Get(Q@) B | D+6KvjStEhaV0g=
—
E 4—2 — | B | DH72Eytgkl4dtQ=

Ag B | Encrypted Msg

Q@ encodes H - \

Al
A@ encodes “Encrypted Msg”

Many applications benefit from clients
retrieving messages in a batch

wslack W7 [\ﬁb

Clients can get k elements by issuing k queries

B | Msg1l
B | Msg?2
B Msg3
O

Msg 4

Clients can get k elements by issuing k queries

B | Msg1l

.L e E 8| Msg?2

Want: B I = B Msg3

=5 Qg B Msg4
m-> Qg

Clients can get k elements by issuing k queries

L Qe Q8 Qo B | Msg1l
Bt RS
Want: 1 I = B Msg3
=5 Qg B Msg4
m-> Qg

m-> Qg

Clients can get k elements by issuing k queries

Qe Qo Qo

vy 3 3

L Qe Q8 Qo B | Msg1l

y — E 8| Msg?2

Want: 1 I = B Msg3

=5 Qg B Msg4
m-> Qg

m-> Qg

Clients can get k elements by issuing k queries

y -—
AQ AB Ag

Want: i B H
leQa
m-> Qg
m-> Qg

Qe Qo Qo

v ¥ ¥

H | Msgl

Msg 2

Msg 3

H B | O

Msg 4

y 3 3

Ag Ag A8

Server processes each
guery independently

Elements processed: kn = 12 (4 per query)

Can we amortize the cost of
answering k Get requests?

Idea 1: Partition the database into k buckets

B Msg1l

l:_ —_—— E B | Msg?2
= << B Msg3
B Msg4

Split database into k buckets with a static partitioning scheme

Idea 1: Partition the database into k buckets

Bucket 1 Bucket 2 Bucket 3

[] Msg 2 [] Msg 1 [Msg 4

e

Want: i @ H

Msg 3

Idea 1: Partition the database into k buckets

Bucket 1 Bucket 2 Bucket 3

[] Msg 2 [] Msg 1 [Msg 4

e

Want: i @ H

Msg 3

Idea 1: Partition the database into k buckets

Qe Qe Qe
4 2 4
Bucket 1 Bucket 2 Bucket 3

B Msg?2 m| Msgl B | Msg4

e

Want: i @ H

Msg 3

Idea 1: Partition the database into k buckets

Qe Qe Qe
4 2 4
Bucket 1 Bucket 2 Bucket 3

Qe
O —

Msg 3
WantmEm Ag Ag A
° I ' 1 !
Ag Ag AQ

Elements processed: n = 4 (8 fewer than before)

[ssue: how does a client get >1 message from
the same bucket?

Bucket 1 Bucket 2 Bucket 3

[] Msg 2 [] Msg 1 [Msg 4

e

Want: i O &

Msg 3

[ssue: how does a client get >1 message from

the same bucket?

e

Want: i O &

Qe (g

Bucket 1 Bucket 2 Bucket 3
Msg 2 Msg 1 Msg 4
Msg 3

[ssue: how does a client get >1 message from
the same bucket?

Qe Vg Qe V@ Qe (@
$ $ $

Bucket 1 Bucket 2 Bucket 3

[] Msg 2 [] Msg 1 [Msg 4

e

Msg 3

Want: i O &

[ssue: how does a client get >1 message from
the same bucket?

Qe Vg Qe V@ Qe (@
$ $ $

Bucket 1 Bucket 2 Bucket 3

Qg8 Qp
O —

Wantmmm ~8 A8 Ag Misg 3
Ag Ag Ag 4 4 $
Ag Ag Ag Ap Ag Apg

Elements processed: 8 (4 fewer than before)

[ssue: how does a client get >1 message from
the same bucket?

Qe Vg Qe V@ Qe (@
$ $ $

Bucket 1 Bucket 2 Bucket 3

Qe Q@
—————>
.l —
Wantmmm 28 A8 Ag Msg 3
Ag Ag Ag 4 4 $
Ag A8 Ag Ag Ag AQ

| ots of useless

answers (overhead)
Elements processed: 8 (4 fewer than before)

Idea 2: Alias messages under two labels

Bucket 1 Bucket 2 Bucket 3

[] Msg 2 [] Msg 1 [Msg 4

Msg 3

Idea 2: Alias messages under two labels

Bucket 1 Bucket 2 Bucket 3

0| Msg2 H | Msgl A | Msg1l

>

Msg 3 Msg 2 A | Msg3

A Msg 4 O Msg 4

Idea 2: Alias messages under two labels

Bucket 1 Bucket 2 Bucket 3

1 —

>

Msg 3 Msg 2 A | Msg3

A | Msg4 B Msg4

Any message can be found in 2 different buckets
—> doubles the cost of processing each query

With aliasing, clients have multiple buckets
from which to get a message

- Clients can leverage the power of 2 choices

[Azar, Broder, Karlin, and Upfal, STOC '94]
[Mitzenmacher, Ph.D. Thesis ‘96]

Idea 2: Alias messages under two labels

Table 1 Table 2 Table 3

e

>

Msg 3 Msg 2 A | Msg3

Want: i O &

A | Msg4 B Msg4

Idea 2: Alias messages under two labels

Qe Qe Qe
¥ 4 \ 4
Table 1 Table 2 Table 3

e

>

Msg 3 Msg 2 A | Msg3

Want: i O H

A | Msg4 B Msg4

Idea 2: Alias messages under two labels

Qe Qe Qe
¥ 4 \ 4
Table 1 Table 2 Table 3

O ——

A Msq 2 A Msqg 3

wantmzm "0 A8 Ag Msg 3 ° 2
‘ A | Msg4 B Msg4

a ¥ ¥

AQ Ag

Elements processed: 8 (4 fewer than before)

Idea 2: Alias messages under two labels

Qe Qe Qe
¥ 4 \ 4
Table 1 Table 2 Table 3

O ——

A Msq 2 A Msqg 3

Wantmzm -8 A8 Ag Msg 3 ° 2
‘ A | Msg4 B Msg4

No useless answers Ag ‘ ‘

AQ Ag

Elements processed: 8 (4 fewer than before)

Queries required to get any k messages

Single requests

queries

40

30

20

10

Queries required to get any k messages

Single requests

Partitioning

0 10 20 30 40

buckets = # messages to get = k

queries

40

30

20

10

Queries required to get any k messages

Single requests

Partitioning

Partitioning + Aliasing

0 10 20 30 40

buckets = # messages to get = k

>2X

In the paper we also discuss

* How to encode buckets so that one query is sufficient

* How to construct queries If clients do not know the layout of the
server’'s database

In the rest of this talk we answer

* What Is the performance of Pung?

Pung’'s prototype

5K source lines of Rust

* PIR library is XPIR [Aguilar-Melchor et al., PETS 2016]

* Pung’s server-side computation expressed as a dataflow graph

 Runs on a Naiad cluster (using the timely dataflow library)

Evaluation questions

 How many users and messages can Pung support?

* What Is the throughput of Pung when batching?

Evaluation setup

Put

L ’
’ o\ Get

< >

Server Is 64 dataflow workers across 4 VMs

Evaluation setup

Put

L ’
’ o\ Get

< >

Server Is 64 dataflow workers across 4 VMs

[—[—[1] EHE,/E
] —

Dissent [CCS ‘10] Vuvuzela [SOSP '15]

How many users and messages can Pung support?

Number of users supported with 1 min latency

Dissent: ~64
Pung: ~65K

1000X

Vuvuzela: ~2M

Number of users supported with 1 min latency

Dissent provides a stronger

Dissent: ~64 property than Pung and
1000X vuvuzela
Pung: ~65K

Vuvuzela: ~2M

Number of users supported with 1 min latency

Dissent provides a stronger

Dissent: ~64 property than Pung and
1000X Vuvuzela

Pung: ~65K
:l‘ 32X Pung withstands a stronger
Vuvuzela: ~2M adversary than Vuvuzela

What Is the throughput of Pung when batching?

Pung's throughput is 6X lower than Vuvuzela

E 1M B Pung = Vuvuzela

P

(D)

g 10K

7))

7))

(D)

=

= 100 I
>

Q.

S

= 1 Better
- 32K 65K 131K

Number of active users (sending and receiving 64 messages)

Pung's throughput is 6X lower than Vuvuzela

=

= 1M B Pung O Vuvuzela 5 OX

V)

(¢))

S 10K

(0]

(7))

(ab]

=

= 100 I
>

o

S

8 1 Better
- 32K 65K 131K

Number of active users (sending and receiving 64 messages)

Limitations

* High network costs for large batches

* Requires users to know a shared secret (topic of the next talk!)
* No known efficient dialing protocol (also in the next talk!)

* Denial of service is still a problem

In summary, Pung...

 Allows users to communicate privately even if all
Infrastructure Is compromised

» Supports tens of thousands of users

* Introduces a batch procedure that improves efficiency

Code will be available at: https://github.com/sga001/pung
Pung = ROT13("Chat”)

