
Unobservable communication
over fully untrusted infrastructure

Sebastian Angel Srinath Setty

UT Austin and NYU Microsoft Research

Communication is possible because of many
service providers

A

B

Service providers

These providers can observe all communication

zMessi  B: “How serious is my injury?”A

B

Encryption can hide the message

A

B

Content of the message is hidden

zMessi  B: NTluEM2f8j6dMLeL9V0=

But metadata remains

A

B

zMessi  B: NTluEM2f8j6dMLeL9V0=

Metadata is still visible to service providers

But metadata remains

A

B

zMessi  B: NTluEM2f8j6dMLeL9V0=

Metadata is still visible to service providers

Metadata can be as sensitive as data

“telephone metadata… can be used to determine highly

sensitive traits.”
[Mayer, Mutchler, and Mitchell, PNAS 2016]

General Hayden: “We kill people based on metadata.”
(former NSA and CIA director)

[David Cole, NYR Daily 2014]

Objective: adversary cannot determine who is
talking to whom, or if anybody is talking at all

A
B

C

A
B

C

A
B

C

⊥

A talks to BA talks to C A talks to nobody (“⊥”)

Objective: adversary cannot determine who is
talking to whom, or if anybody is talking at all

A
B

C

A
B

C

A
B

C

⊥

A talks to BA talks to C A talks to nobody (“⊥”)

Variants of this objective date back to the 80s [Chaum, CACM ‘81]

Many systems already meet this objective!

• Onion routing (e.g., Tor [USENIX Sec ‘04])

Servers remove one layer of encryption

and forward messages to the next hop

Many systems already meet this objective!

• Onion routing (e.g., Tor [USENIX Sec ‘04])

Strong assumptions on which parts of the infrastructure can be compromised

Servers remove one layer of encryption

and forward messages to the next hop

Many systems already meet this objective!

• Onion routing (e.g., Tor [USENIX Sec ‘04])

Supports millions of users but tolerates few compromises

Many systems already meet this objective!

• Onion routing (e.g., Tor [USENIX Sec ‘04])

Supports millions of users but tolerates few compromises

• Mix networks (e.g., Vuvuzela [SOSP ’15])

Servers shuffle traffic, add noise (cover traffic), remove layers of encryption, etc.

Requires at least one correct server

Many systems already meet this objective!

• Onion routing (e.g., Tor [USENIX Sec ‘04])

Supports millions of users but tolerates few compromises

• Mix networks (e.g., Vuvuzela [SOSP ’15])

Supports 2 million users but requires one correct server

Many systems already meet this objective!

• Onion routing (e.g., Tor [USENIX Sec ‘04])

Supports millions of users but tolerates few compromises

• Mix networks (e.g., Vuvuzela [SOSP ’15])

Supports 2 million users but requires one correct server

• DC Networks (e.g., Dissent [CCS ’10])

Peer-to-peer network

Many systems already meet this objective!

• Onion routing (e.g., Tor [USENIX Sec ‘04])

Supports millions of users but tolerates few compromises

• Mix networks (e.g., Vuvuzela [SOSP ’15])

Supports 2 million users but requires one correct server

• DC Networks (e.g., Dissent [CCS ’10])

Supports dozens of users but tolerates full infrastructure compromise

Many systems already meet this objective!

• Onion routing (e.g., Tor [USENIX Sec ‘04])

Supports millions of users but tolerates few compromises

• Mix networks (e.g., Vuvuzela [SOSP ’15])

Supports 2 million users but requires one correct server

• DC Networks (e.g., Dissent [CCS ’10])

Supports dozens of users but tolerates full infrastructure compromise

We propose Pung

• Provably hides metadata even if all infrastructure is compromised

• Supports point-to-point and group communication

A
B

C Point-to-point

A
B

C Group communication

• Processes >100K messages/min with 4 servers (scales linearly with # servers)

In the rest of this talk we answer

• How does Pung work?

• What is the performance of Pung?

Clients use a key value store to communicate

A

B

Untrusted key value store

Clients use a key value store to communicate

A

B

Untrusted key value store
Put(B, Encrypted Msg)

Clients use a key value store to communicate

A

B

Get(B)

Encrypted Msg

Untrusted key value store
Put(B, Encrypted Msg)

Pung must hide a lot of metadata

• Participants of a conversation

• Message size

• Time of a message being sent

• Time of message delivery

• Frequency of communication

Pung must hide a lot of metadata

• Participants of a conversation

• Message size

• Time of a message being sent

• Time of message delivery

• Frequency of communication

Put request parameter leaks recipient

A

B

Key leaks the recipient’s identity

Put(B, Encrypted Msg)

Get(B)

Encrypted Msg

Put request parameter leaks recipient

A

B

Put(, Encrypted Msg)

Get()

Opaque label no longer leak recipient’s identity!

Encrypted Msg

Put + Get in combination leak metadata!

A

B

Put(, Encrypted Msg)

Get()

Encrypted Msg

Put from A and Get from B can

be associated because they

have the same inputs/outputs

 A is talking to B

A

B

Put(, Encrypted Msg)

Get()Q

Solution: break association of Put and Get

encodes Q

A

B

Put(, Encrypted Msg)

Get()Q

A
encodes “Encrypted Msg”A

Solution: break association of Put and Get

encodes Q

A

B

Put(, Encrypted Msg)

Put and Get cannot be

associated since they don’t

share anything distinguishable

Get()Q

A
encodes “Encrypted Msg”A

Solution: break association of Put and Get

encodes Q

Server can answer the Query obliviously

B

Encrypted Msg

D+6KvjStEhaV0g=

DH72Eytqk14dtQ=

encodes Q

encodes “Encrypted Msg”A

Get()Q

A

A

Q

Server can answer the Query obliviously

B

Encrypted Msg

D+6KvjStEhaV0g=

DH72Eytqk14dtQ=

Private information retrieval (PIR) hides the access pattern by requiring the

server to perform cryptographic operations over every single entry

encodes Q

encodes “Encrypted Msg”A

Get()Q

A

A

Q

Many applications benefit from clients
retrieving messages in a batch

2,016

Clients can get k elements by issuing k queries

Msg 3

Msg 1

Msg 2

Want:

Msg 4

Clients can get k elements by issuing k queries

Msg 3

Msg 1

Msg 2





Q

Q

Want:

Msg 4

 Q

Clients can get k elements by issuing k queries

Msg 3

Msg 1

Msg 2





Q

Q

Q Q

Want:

Msg 4

 Q

Q

Clients can get k elements by issuing k queries

Msg 3

Msg 1

Msg 2





Q

Q

Q Q

Q Q

Want:

Msg 4

 Q

Q

Q

Clients can get k elements by issuing k queries

Elements processed: kn = 12 (4 per query)

Msg 3

Msg 1

Msg 2
Server processes each

query independently





Q

A

Q

Q Q

A

A

Q Q

A

Want:

Msg 4

 Q

Q

A

A

Q

Can we amortize the cost of
answering k Get requests?

Idea 1: Partition the database into k buckets

Split database into k buckets with a static partitioning scheme

Msg 3

Msg 1

Msg 2

Msg 4

Idea 1: Partition the database into k buckets

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Want:

Msg 4

Bucket 3

Idea 1: Partition the database into k buckets

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2
Q

Want:

Msg 4

Bucket 3

Idea 1: Partition the database into k buckets

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Q Q

Q

Want:

Msg 4

Bucket 3

Q

Idea 1: Partition the database into k buckets

Elements processed: n = 4 (8 fewer than before)

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Q Q

Q

Want:

Msg 4

Bucket 3

A A A

Q

A A A

Issue: how does a client get >1 message from
the same bucket?

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Want:

Msg 4

Bucket 3

Issue: how does a client get >1 message from
the same bucket?

Q Q’
Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Want:

Msg 4

Bucket 3

Issue: how does a client get >1 message from
the same bucket?

Q Q’
Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Want:

Msg 4

Bucket 3

Q Q’ Q Q’ Q Q’

Issue: how does a client get >1 message from
the same bucket?

Elements processed: 8 (4 fewer than before)

Q Q’

A A’

A

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Want:

Msg 4

Bucket 3

A A A

A A

A’

Q Q’ Q Q’ Q Q’

A A’ A’

Issue: how does a client get >1 message from
the same bucket?

Elements processed: 8 (4 fewer than before)

Q Q’

A A’

A

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Want:

Msg 4

Bucket 3

A A A

A A

A’

Q Q’ Q Q’ Q Q’

A A’ A’
Lots of useless

answers (overhead)

Idea 2: Alias messages under two labels

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Msg 4

Bucket 3

Idea 2: Alias messages under two labels

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Msg 1

Bucket 3

Msg 2

Msg 4

Msg 3

Msg 4

Idea 2: Alias messages under two labels

Any message can be found in 2 different buckets

 doubles the cost of processing each query

Msg 1

Msg 3

Msg 2

Bucket 1 Bucket 2

Msg 1

Bucket 3

Msg 2

Msg 4

Msg 3

Msg 4

With aliasing, clients have multiple buckets
from which to get a message

 Clients can leverage the power of 2 choices
[Azar, Broder, Karlin, and Upfal, STOC ’94]

[Mitzenmacher, Ph.D. Thesis ‘96]

Idea 2: Alias messages under two labels

Msg 1

Msg 3

Msg 2

Table 1 Table 2

Msg 1

Table 3

Msg 2

Msg 4

Msg 3

Msg 4
Want:

Idea 2: Alias messages under two labels

Msg 1

Msg 3

Msg 2

Table 1 Table 2

Msg 1

Table 3

Msg 2

Msg 4

Msg 3

Msg 4
Want:

Q

Q Q Q

Idea 2: Alias messages under two labels

Msg 1

Msg 3

Msg 2

Table 1 Table 2

Msg 1

Table 3

Msg 2

Msg 4

Msg 3

Msg 4
Want:

Q

Q

A

Q Q

AA

AA A

Elements processed: 8 (4 fewer than before)

Idea 2: Alias messages under two labels

Msg 1

Msg 3

Msg 2

Table 1 Table 2

Msg 1

Table 3

Msg 2

Msg 4

Msg 3

Msg 4
Want:

Q

Q

A

Q Q

AA

AA A

Elements processed: 8 (4 fewer than before)

No useless answers

Queries required to get any k messages

Single requests

Queries required to get any k messages

0

10

20

30

40

0 10 20 30 40

#
 q

u
e
ri
e
s

buckets = # messages to get = k

Partitioning

>5X

Single requests

Queries required to get any k messages

0

10

20

30

40

0 10 20 30 40

#
 q

u
e
ri
e
s

buckets = # messages to get = k

Partitioning

Partitioning + Aliasing >2X

>5X

Single requests

In the paper we also discuss

• How to encode buckets so that one query is sufficient

• How to construct queries if clients do not know the layout of the
server’s database

In the rest of this talk we answer

• How does Pung work?

• What is the performance of Pung?

Pung’s prototype

• 5K source lines of Rust

• PIR library is XPIR [Aguilar-Melchor et al., PETS 2016]

• Pung’s server-side computation expressed as a dataflow graph

• Runs on a Naiad cluster (using the timely dataflow library)

• How many users and messages can Pung support?

• What is the throughput of Pung when batching?

Evaluation questions

Evaluation setup

Server is 64 dataflow workers across 4 VMs

Put

Get

Put

Get

Evaluation setup

Server is 64 dataflow workers across 4 VMs

Put

Get

Put

Get

Dissent [CCS ‘10] Vuvuzela [SOSP ’15]

How many users and messages can Pung support?

Number of users supported with 1 min latency

Dissent: ~64

Pung: ~65K

Vuvuzela: ~2M

1000X

Number of users supported with 1 min latency

Dissent: ~64

Pung: ~65K

Vuvuzela: ~2M

1000X

Dissent provides a stronger

property than Pung and

Vuvuzela

Number of users supported with 1 min latency

Dissent: ~64

Pung: ~65K

Vuvuzela: ~2M

1000X

32X

Dissent provides a stronger

property than Pung and

Vuvuzela

Pung withstands a stronger

adversary than Vuvuzela

What is the throughput of Pung when batching?

Pung’s throughput is 6X lower than Vuvuzela

32K 65K 131K

Pung Vuvuzela

1

100

10K

1M

T
h
ro

u
g

h
p

u
t

(m
e

s
s
a

g
e
s
 /

 m
in

)

Number of active users (sending and receiving 64 messages)

Better

Pung’s throughput is 6X lower than Vuvuzela

32K 65K 131K

Pung Vuvuzela

1

100

10K

1M

T
h
ro

u
g

h
p

u
t

(m
e

s
s
a

g
e
s
 /

 m
in

)

Number of active users (sending and receiving 64 messages)

Better

5.9X

Limitations

• High network costs for large batches

• Requires users to know a shared secret (topic of the next talk!)

• No known efficient dialing protocol (also in the next talk!)

• Denial of service is still a problem

In summary, Pung…

• Allows users to communicate privately even if all
infrastructure is compromised

• Supports tens of thousands of users

• Introduces a batch procedure that improves efficiency

Code will be available at: https://github.com/sga001/pung

Pung = ROT13(“Chat”)

