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Communication is possible because of many

service providers
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These providers can observe all communication

Messi - B: “How serious is my injury?”]




Encryption can hide the message
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Content of the message is hidden




But metadata remains

Metadata is still visible to service providers
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Metadata can be as sensitive as data

“telephone metadata... can be used to determine highly

sensitive traits.”
[Mayer, Mutchler, and Mitchell, PNAS 2016]

General Hayden: “We kill people based on metadata.”
(former NSA and CIA director)
[David Cole, NYR Daily 2014]



Objective: adversary cannot determine who is
talking to whom, or if anybody is talking at all
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Variants of this objective date back to the 80s [Chaum, CACM ‘81]



Many systems already meet this objective!

« Onion routing (e.g., Tor [USENIX Sec ‘04])
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and forward messages to the next hop




Many systems already meet this objective!

* Onion routing (e.g., Tor [USENIX Sec ‘04])

Strong assumptions on which parts of the infrastructure can be compromised
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Many systems already meet this objective!

* Onion routing (e.g., Tor [USENIX Sec ‘04])

Supports millions of users but tolerates few compromises



Many systems already meet this objective!

* Mix networks (e.g., Vuvuzela [SOSP '13])
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Servers shuffle traffic, add noise (cover traffic), remove layers of encryption, etc.



Many systems already meet this objective!

« Mix networks (e.g., Vuvuzela [SOSP '15])

Supports 2 million users but requires one correct server
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Supports 2 million users but requires one correct server

* DC Networks (e.g., Dissent [CCS "10])

Supports dozens of users but tolerates full infrastructure compromise



We propose Pung

* Provably hides metadata even Iif all infrastructure iIs compromised

e Supports point-to-point and group communication
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C Point-to-point Group communication

* Processes >100K messages/min with 4 servers (scales linearly with # servers)



In the rest of this talk we answer

* How does Pung work?

* What Is the performance of Pung?



Clients use a key value store to communicate
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Clients use a key value store to communicate

Put(B, Encrypted Msg)

Encrypted Msg

Get(B)
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Pung must hide a lot of metadata

 Participants of a conversation
 Message size

* Time of a message being sent
* Time of message delivery

* Frequency of communication
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Put request parameter leaks recipient
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Put request parameter leaks recipient

Opaque label no longer leak recipient’s identity!
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Put + Get in combination leak metadata!

T

Put(ll, Encrypted Msg)

Put from A and Get from B can
be associated because they
Encrypted Msg have the same inputs/outputs
= Ais talking to B



Solution: break association of Put and Get
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Solution:

T

break association of Put and Get

Put(ll, Encrypted Msg)

Put and Get cannot be
associated since they don't
share anything distinguishable

Q@ encodes
A @ encodes “Encrypted Msg”



Server can answer the Query obliviously
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Server can answer the Query obliviously

Private information retrieval (PIR) hides the access pattern by requiring the
server to perform cryptographic operations over every single entry

Qg
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Al
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Many applications benefit from clients
retrieving messages in a batch
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Clients can get k elements by issuing k queries
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Clients can get k elements by issuing k queries
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Clients can get k elements by issuing k queries
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Server processes each
guery independently

Elements processed: kn = 12 (4 per query)



Can we amortize the cost of
answering k Get requests?



Idea 1: Partition the database into k buckets
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Split database into k buckets with a static partitioning scheme
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Idea 1: Partition the database into k buckets

Qe Qe Qe
4 2 4
Bucket 1 Bucket 2 Bucket 3
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Elements processed: n = 4 (8 fewer than before)



[ssue: how does a client get >1 message from
the same bucket?
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Idea 2: Alias messages under two labels

Bucket 1 Bucket 2 Bucket 3

1 —

>

Msg 3 Msg 2 A | Msg3

A | Msg4 B Msg4

Any message can be found in 2 different buckets
—> doubles the cost of processing each query



With aliasing, clients have multiple buckets
from which to get a message

- Clients can leverage the power of 2 choices

[Azar, Broder, Karlin, and Upfal, STOC '94]
[Mitzenmacher, Ph.D. Thesis ‘96]



Idea 2: Alias messages under two labels

Table 1 Table 2 Table 3
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Queries required to get any k messages

Single requests



# queries

40

30

20

10

Queries required to get any k messages

Single requests

Partitioning

0 10 20 30 40

# buckets = # messages to get = k



# queries

40

30

20

10

Queries required to get any k messages

Single requests

Partitioning

Partitioning + Aliasing
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# buckets = # messages to get = k

>2X



In the paper we also discuss

* How to encode buckets so that one query is sufficient

* How to construct queries If clients do not know the layout of the
server’'s database



In the rest of this talk we answer

* What Is the performance of Pung?



Pung’'s prototype

5K source lines of Rust

* PIR library is XPIR [Aguilar-Melchor et al., PETS 2016]

* Pung’s server-side computation expressed as a dataflow graph

 Runs on a Naiad cluster (using the timely dataflow library)



Evaluation questions

 How many users and messages can Pung support?

* What Is the throughput of Pung when batching?
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How many users and messages can Pung support?



Number of users supported with 1 min latency
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Pung: ~65K

1000X

Vuvuzela: ~2M
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Number of users supported with 1 min latency

Dissent provides a stronger

Dissent: ~64 property than Pung and
1000X Vuvuzela

Pung: ~65K
:l‘ 32X Pung withstands a stronger
Vuvuzela: ~2M adversary than Vuvuzela



What Is the throughput of Pung when batching?



Pung's throughput is 6X lower than Vuvuzela
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Pung's throughput is 6X lower than Vuvuzela
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Limitations

* High network costs for large batches

* Requires users to know a shared secret (topic of the next talk!)
* No known efficient dialing protocol (also in the next talk!)

* Denial of service is still a problem



In summary, Pung...

 Allows users to communicate privately even if all
Infrastructure Is compromised

» Supports tens of thousands of users

* Introduces a batch procedure that improves efficiency

Code will be available at: https://github.com/sga001/pung
Pung = ROT13("Chat”)



