
Combining ACID and BASE!
in a distributed database

Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang,!
Navid Yaghmazadeh, Lorenzo Alvisi, Prince Mahajan

Salt

The University of Texas at Austin

 Four properties in a single abstraction

• Ease of programming

• Easy to reason about

TRANSACTIONS ARE GREAT

Atomicity Consistency Isolation Durability (ACID)

Transaction

TRANSACTIONS ARE GREAT

Concurrency control!
limits performance

2PC protocol is costly

Txn Manager Data Nodes

Write(x)

Commit

Write(y)
Phase 1

Phase 2

����

THE ALTERNATIVE: BASE

Application

 ACID Storage Transaction
Guarantees

Storage Interface

• Write custom code to get better performance

THE ALTERNATIVE: BASE

Application

 BASE Storage (e.g., put, get)
Storage Interface

• Write custom code to get better performance

• Complexity gets out of control

THE ALTERNATIVE: BASE

Application

 BASE Storage (e.g., put, get)

 Application Implement
Consistency

Storage Interface

A STARK CHOICE

Performance

Ease of programming

Ease of programming & Performance

ACID

BASE

20% of the causes!
account for!

80% of the effects

Vilfredo Pareto

NOT ALL TRANSACTIONS
ARE CREATED EQUAL

•Many transactions are not run frequently
•Many transactions are lightweight

20% of the causes!
account for!

80% of the effects

AN OPPORTUNITY

Txn 1 Txn 2
•Identify critical transactions

•BASE-ify only critical transactions

BASE

SALT

Motivation!

Base Transactions & Salt Isolation!

Achieving Salt Isolation!

Evaluation

Transfer

Is c≥$10?

c=c-$10

s=s+$10

MORE CONCURRENCY !
Transfer

Part1

Is c≥$10?

c=c-$10

Part2

s=s+$10

Transfer

Is c≥$10?

c=c-$10

s=s+$10

Transfer

Is c≥$10?

c=c-$10

s=s+$10

MORE CONCURRENCY !
Transfer

Part1

Is c≥$10?

c=c-$10

Part2

s=s+$10

Transfer

Part1

Is c≥$10?

c=c-$10

Part2

s=s+$10

Time

Transfer

Is c≥$10?

c=c-$10

s=s+$10

CORRECTNESS AT RISK

Read c

Read s

Balance

Part2

s=s+$10

Part1

Is c≥$10?

c=c-$10

CORRECTNESS AT RISK
Transfer

Read c

Read s

Balance
Exposed !

state

Part2

s=s+$10

Finer Isolation for one transaction!
may affect all transactions!!

Part1

Is c≥$10?

c=c-$10

CORRECTNESS AT RISK

Read c

Read s

Balance

Performance vs Complexity

Better Performance

More Interleavings!

More Complexity

Performance vs Complexity

Better Performance

Other Transactions Unaffected

More Interleavings !
(only among perf-critical txns)

s=s+$10

Is c≥$10?

c=c-$10

Behaves differently  
when interacting with different transactions

Balance

Read c

Read s

Transfer 2

Is c≥$10?

c=c-$10

s=s+$10

Transfer 1

Balance

Read c

Read s

Time

Transfer 2

Is c≥$10?

c=c-$10

s=s+$10

Transfer 1

Is c≥$10?

c=c-$10

s=s+$10

BASE TRANSACTION
BASE

transaction

alkaline txn

alkaline txn

Behaves differently  
when interacting with different transactions

BASE INTERACT WITH BASE

Fine Isolation granularity!
between BASE transactions

BASE
1

BASE
2

BASE INTERACT WITH BASE

Fine Isolation granularity!
between BASE transactions

BASE

BASE INTERACT WITH ACID

ACID

BASE transactions provide coarse Isolation!
granularity to ACID transactions

BASE

BASE INTERACT WITH ACID
ACID

BASE transactions provide coarse Isolation!
granularity to ACID transactions

SALT ISOLATION

Performance & Ease of Programming

BASE transactions: multiple granularities of Isolation

To ACID transactions:!
a single, monolithic !
ACID transaction

To BASE transactions:!
a sequence of small !
ACID transactions

SALT

Motivation!

Base Transactions & Salt Isolation!

Achieving Salt Isolation!

Evaluation

ONE MECHANISM

LOCKS

ACID locks!
Alkaline locks!
Saline locks

Three flavors

ACID LOCKS

Lock Table

ACID 1

Write x
AC-R AC-W

AC-R √ X
AC-W X XACID 2

Read x

Execute

 LOCKS?

ACID

Rx

BASE

Rx

Execute

Execute

BASE

Wx

 LOCKS?

ACID

Rx

BASE

Rx

Execute

Execute

alkaline lock

saline lock

BASE

Wx

ALKALINE LOCKS

AC-R AC-W alk-R alk-W

AC-R √ X √ X
AC-W X X X X
alk-R √ X √ X
alk-W X X X X

ACID

Rx

BASE

Rx

Lock Table

alkaline lock

Wait Wait

BASE

Wx

Conflict with ACID & alkaline locks

SALINE LOCKS

ACID

Rx

Wait

saline lock

AC-R AC-W alk-R alk-W sal-R sal-W

AC-R √ X √ X √ X
AC-W X X X X X X
alk-R √ X √ X
alk-W X X X X
sal-R √ X
sal-W X X

Lock Table

AC-R AC-W alk-R alk-W sal-R sal-W

AC-R √ X √ X √ X
AC-W X X X X X X
alk-R √ X √ X √ √
alk-W X X X X √ √
sal-R √ X √ √ √ √
sal-W X X √ √ √ √

Lock Table

BASE

Wx

Conflict only with ACID locks

A SUBTLE PROBLEM

ACID reads uncommitted value of x!

BASE

W x BASE

R x

y=x

ACID

R y

Dirty Read!

A SUBTLE PROBLEM

For the solution, please read our paper

BASE

W x BASE

R x

y=x

ACID

R y

Dirty Read!

THE BOTTOM LINE

Guarantee!

Salt prevents all ACID transactions from being
affected by BASE transactions either directly or
indirectly.

SALT

Motivation!

Base Transactions & Salt Isolation!

Achieving Salt Isolation!

Evaluation

What is the performance gain of Salt
compared to ACID?

Can we get most performance gain
compared to the BASE approach?

QUESTIONS TO ANSWER

EXPERIMENTAL SETUP
Configuration!

• Emulab Cluster (Dell Power Edge R710)!
• 10 shards, 3-way replicated!

Workloads!
• TPC-C!
• Fusion Ticket!
• Microbenchmarks

PERFORMANCE GAIN

250

La
te

nc
y

(m
s) 200

150
100

50
0

Fusion Ticket

0 1000 2000 3000 4000 5000 6000 7000 8000

Throughput (transactions/sec)

ACID Salt

6.5X

REAP MOST PERFORMANCE OF BASE
Fusion Ticket

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/se

c) 10000
8000
6000
4000
2000

0

Number of BASE-ified transactions

ACID 1 2 Raw ops

… …

3

6.5X 7.2X

RELATED WORK

Optimizing ACID Performance!
• H-Store, Granola, F1, Sagas, Transaction Chain, Calvin …!

!

BASE with enhanced semantics (e.g., partition local transactions)!
• ElasTras, G-Store, Megastore …

SALT

Key Abstraction!
Base Transaction

Pain Point
Transactional systems !

do not scale

Promising!
Results

