
Ironclad Apps: End-to-End Security via
Automated Full-System Verification

Danfeng Zhang

Arjun NarayanJay LorchChris Hawblitzel Jon Howell

Bryan Parno Brian Zill

2

Online and Mobile Security

• Chase Online, the Chase Mobile app and
the Chase Mobile website use Secure
Socket Layer (SSL) technology

…
• We periodically review our operations and

business practices to make sure they
comply with the corporate policies and
procedures we follow to protect
confidential information

An Ironclad app guarantees to remote parties
that every instruction it executes adheres to

a high-level security spec.

3

My personal data
will not be misused

My password will never leak

Ironclad combines:

4

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

• Late launch

• Trusted Computing

• Software verification

Ironclad combines:

5

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

• Late launch

• Trusted Computing

• Software verification

Secure Remote
Equivalence

Entire
software

stack

Reasonable
effort

6

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

Verification implies:
• No buffer overflows

• No code injection

• No type-safety flaws

• No information disclosures

• No crypto implementation flaws

• Absence of side channels

• Liveness

• Physical security

We don’t prove:

We always know what the app
will do with private data!

…

7

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

Verification goals
• End-to-end security

─ Complete

─ Low-level

• Rapid development

• Non-goal: Verify existing code

• Long-term: Performance matches unsafe code

Verification methodology

8

High-
level
spec

Verifiable, high-level
implementation

Ironclad spec
translator

Ironclad compiler

Low-
level
spec

Verifiable assembly language

Verifier
Assembler

+ Linker

predicate IsPrime(p:int) {
2 <= p

&& forall x :: 2 <= x < p ==> p % x != 0
}

procedure CheckPrimality(p:int) returns (b:bool)
requires p >= 0;
ensures b == IsPrime(p);

{
var divisor := 2;
while divisor < p

invariant 2 <= divisor <= p;
{

...

call edx := Mov(2);
loop:
invariant 2 <= edx < eax;
invariant MemInv(...);
...
if (edx >= eax)
{ goto loopEnd; }

mov edx, 2

loop:
...

cmp edx, eax
jae loopEnd

= Untrusted

= Trusted

Verification methodology: Benefits

9

High-
level
spec

Verifiable, high-level
implementation

Ironclad compiler

Low-
level
spec

Verifiable assembly language

Verifier
Assembler

+ Linker

Ironclad spec
translatorSimple and

declarative

Rapid
development

Low-level
verification

Arbitrarily
complex

Hardware specs

10

procedure instr_Add(..., x:reg, y:reg)
ensures x := (x + y) % 0x100000000;

...

type core = core(regs:[int]int, eip:int, ..., segments, paging, ...);
type machine = machine(cores:[int]core, mem:[int]int, io:IOState);

Writing trustworthy specifications

3439 pages=

795 pages=

Idiomatic
specification

1,364 lines of spec
(< 60 instructions)

296 lines of spec
(secure randomness

+ attestation)

Spec reviews

Idiomatic
specification

11

Writing trustworthy specifications

Hardware specs

App
spec

Lib
specs

OS
specs

predicate ValidTransition(old_state:NotaryState,
new_state:NotaryState,
request:Request,
response:Response, ...)

{
match request

...
case AdvanceCounter =>

response.AdvanceCntrResponse?
&& new_state.ctr == old_state.ctr + 1
&& response.sig == RSA_Sign(old_state.ctr, request)
&& ...

function SHA256(messageBits:seq<int>) : seq<int>
requires |messageBits| < power2(64);
requires IsBitSeq(messageBits);

{

...
}

12

App
spec

Lib
specs

Hardware specs

Core MathTPM DriverNet Driver

UDP/IP Datatypes RSA

Ethernet BigNumSHA-256

Std. Lib App Common

App

Late
launch

IOMMUSegments GC
Device

IO
OS

specs

Architecture

Verve++

Challenge: Whole-system verification

13

procedure CheckPrimality(p:int) returns (b:bool)
requires p >= 0;
ensures b == IsPrime(p);

{
var divisor := 2;
while divisor < p

invariant 2 <= divisor <= p;
{

...

Functional
verification

(correctness)

procedure instr_outb(..., x:reg)
requires ????

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

F()
all

possible
inputs

all
permitted

output words

Solution: Relational verification

14

procedure instr_inb(..., x:reg)
ensures public(x);

procedure instr_outb(..., x:reg)
requires public(x);

push ebp
mov ebp, esp
sub esp, 4
mov eax, 8

Declassifier

Declassify X by proving the
abstract app would have output X

Rapid verification

15

Automated tools Modular verification

Shared verification

IronBuild

Ironclad Apps

16

Insert datum

Query

Database

Privacy
budget

Key pair

Password Protector Notary

Trusted Incrementer Differentially Private DB

password
123456
12345678
abc123
monkey
qwerty

letmein
dragon
111111
baseball
iloveyou
trustno1

0373 0027

1288 9823

Lessons learned

17

Automated ≠ Automatic

Verification works!

 Non-recursive functions

 Addition & subtraction

Mul/div/mod by small constants

 Forall/exists

 Arrays/seqs

 Recursive functions

 General mul/div/mod

Core MathTPM DriverNet Driver

UDP/IP Datatypes RSA

Ethernet BigNumSHA-256

Std. Lib App Common

App

Late
launch

IOMMUSegments GC
Device

IO

1st Version: Secure,
but non-functionalHow to write concise specs

How to write libraries

Benefits of refinement types

…

Opaque
attributes

Custom
math library

18

0 2 4 6 8 10 12 14 16

OS

TPM Driver

Network Driver

UDP/IP/Ethernet

Std. Lib (bytes, words, arrays)

Math Lib

BigInt Lib

Crypto (SHA, HMAC, RSA)

Apps
Average 4.8 : 1

Proof hints : Implementation LoC

Previously > 25 : 1

Eval: Proof burden ~3 person-years

Previously 22+ pys

Ratio

Eval: System size

19

0 500 1000 1500 2000 2500

OS

TPM Driver

Network Driver

UDP/IP/Ethernet

Std. Lib (bytes, words, arrays)

Math Lib

BigInt Lib

Crypto (SHA, HMAC, RSA)

Apps

Trusted Spec
Implementation

HardwareSoftware

6971 LoC
1750 LoC1796 LoC SW Impl : Spec = 3.9 : 1

41,566 instructions
23.1 : 1

Lines

1

10

100

1000

10000

100000

1000000

ms

RSA private (1024)

0

10

20

30

40

50

60

70

80

90

ns/B

SHA-256

Eval: Performance

Cut by 84%

Within 30% of OpenSSL

Improved by 8300x

Still 22x too slow

Related work

• Early security kernels
─ Examples: KVM/370, VAX VMM, SCOMP, GEMSOS

─ Formally specified, but no connection to implementation

• Recent verified systems
─ Examples: seL4, VCC, PROSPER, CompCert, Jitk

─ Focus on one layer

─ Many verify C code => Good performance

─ Typically less automation => More human proof burden

21

Conclusions
• Ironclad guarantees end-to-end security to remote

parties: Every instruction meets the app’s security spec

• Achieved via:
─ New and modified tools

─ A methodology for rapid verification of systems software

• Verification of systems code is quite feasible!

22

http://research.microsoft.com/ironclad

Thank you!
ironclad@microsoft.com

