Ironclad Apps: End-to-End Security via Automated Full-System Verification

Chris Hawblitzel

Jon Howell

Jay Lorch

Arjun Narayan

Bryan Parno

Danfeng Zhang

Brian Zill

CHASE 🕻

Online and Mobile Security

 Chase Online, the Chase Mobile app and the Chase Mobile website use Secure Socket Layer (SSL) technology

•••

We periodically review our operations and business practices to make sure they comply with the corporate policies and procedures we follow to protect confidential information

An *Ironclad app* guarantees to remote parties that every instruction it executes adheres to a high-level security spec.

Ironclad combines:

• Late launch

6,0

- Trusted Computing
- Software verification

Verification implies:

- No buffer overflows
- No code in
- No type-sa
- No informa
- No crypto implementation flaws

. . .

We don't prove:

- Absence of side channels
- Liveness
- Physical security

6

We always know what the app will do with private data!

Verification goals

- End-to-end security
 - Complete
 - Low-level
- Rapid development
- Non-goal: Verify existing code
- Long-term: Performance matches unsafe code

Verification methodology

Writing trustworthy specifications

Writing trustworthy specifications

Idiomatic

Hardware specs

Architecture

Challenge: Whole-system verification

Functional verification (correctness)

Solution: Relational verification

Rapid verification

Ironclad Apps

Eval: System size

Eval: Performance

Related work

- Early security kernels
 - Examples: KVM/370, VAX VMM, SCOMP, GEMSOS
 - Formally specified, but no connection to implementation
- Recent verified systems
 - Examples: seL4, VCC, PROSPER, CompCert, Jitk
 - Focus on one layer
 - Many verify C code => Good performance
 - Typically less automation => More human proof burden

Conclusions

- Ironclad guarantees end-to-end security to remote parties: Every instruction meets the app's security spec
- Achieved via:
 - New and modified tools
 - A methodology for rapid verification of systems software
- Verification of systems code is quite feasible!

