Cluster Serving: Distributed and Automated Model Inference on Big Data Streaming Frameworks

Authors: Jiaming Song, Dongjie Shi, Qiyuan Gong, Lei Xia, Jason Dai
Outline

Challenges AI productions facing

Integrated Big Data and AI pipeline

Scalable online serving

Cross-industry end-to-end use cases
Big Data & Model Performance

“Machine Learning Yearning”, Andrew Ng, 2016

*Other names and brands may be claimed as the property of others.
Real-World ML/DL Applications Are Complex Data Analytics Pipelines

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

*Other names and brands may be claimed as the property of others.
Outline

Challenges AI productions facing

Integrated Big Data and AI pipeline

Scalable online serving

Cross-industry end-to-end use cases
Integrated Big Data Analytics and AI

Seamless Scaling from Laptop to Distributed Big Data

- Easily prototype end-to-end pipelines that apply AI models to big data
- “Zero” code change from laptop to distributed cluster
- Seamlessly deployed on production Hadoop/K8s clusters
- Automate the process of applying machine learning to big data

Other names and brands may be claimed as the property of others.
AI on Big Data

Seamless Scaling from Laptop to Distributed Big Data

BigDL
Distributed, High-Performance Deep Learning Framework for Apache Spark*

https://github.com/intel-analytics/bigdl

Big Analytics Zoo
Unified Analytics + AI Platform for TensorFlow*, PyTorch*, Keras*, BigDL, OpenVINO, Ray* and Apache Spark*

https://github.com/intel-analytics/analytics-zoo

*Other names and brands may be claimed as the property of others.
Analytics Zoo

Unified Data Analytics and AI Platform

Models & Algorithms
- Recommendation
- Time Series
- Computer Vision
- NLP

ML Workflow
- AutoML
- Automatic Cluster Serving

End-to-end Pipelines
- Distributed TensorFlow* & PyTorch* on Spark*
- Spark* Dataframes & ML Pipelines for DL
- RayOnSpark
- InferenceModel

Compute Environment
- Laptop
- K8S* Cluster
- Hadoop* Cluster
- Cloud

- DL Frameworks (TF*/PyTorch*/OpenVINO*/…)
- Distributed Analytics (Spark*/Flink*/Ray*/…)
- Python Libraries (Numpy/Pandas/sklearn*/…)

*Other names and brands may be claimed as the property of others.

[GitHub](https://github.com/intel-analytics/analytics-zoo)
Outline

Challenges AI productions facing

Integrated Big Data and AI pipeline

Scalable online serving

Cross-industry end-to-end use cases
What's Serving

Input Data → Preprocessing → Inference → Postprocessing → Result

Other names and brands may be claimed as the property of others.
Example of Classical Web Serving

Other names and brands may be claimed as the property of others.
Distributed Model Serving

Distributed model serving in Flink*, Spark*, Kafka*, Storm*, etc

*Other names and brands may be claimed as the property of others.
Architecture of Main Version of Cluster Serving

Version based on Spark* Streaming is also supported.

*Other names and brands may be claimed as the property of others.
Advantages of Analytics Zoo Cluster Serving

Ease of Deployment
One container with all dependencies & leverage existed YARN/K8S cluster

Wide Range Deep Learning model support
Tensorflow*, Caffe*, OpenVINO*, Pytorch*, BigDL*

Low Latency
Continuous Streaming pipeline is supported by Apache Flink* and Spark*

High Throughput & Scalability
Optimization of multithread control, and could easily scale out to clusters

*Other names and brands may be claimed as the property of others.
Data pipeline User Perspective

- **http request**
 - **Input Queue** for requests
 - R5, R4, R3, R2, R1
- **Simple Python script**
- **Output Queue** (or files/DB tables) for prediction results: P1, P2, P3, P4, P5
- **HTTP Server**
- **http response**
- **Local node or Docker container**
- **Network connection**
- **Hadoop*/YARN* (or K8S*) cluster**

*Other names and brands may be claimed as the property of others.
Cluster Serving Workflow Overview

1. Install and prepare Cluster Serving environment on a local node
2. Launch the Cluster Serving service
3. Distributed, real-time (streaming) inference

*Other names and brands may be claimed as the property of others.
Very Quick Start

Start docker container
```
#docker run -itd --name cluster-serving --net=host intelanalytics/zoo-cluster-serving:0.7.0
```

Log into container
```
#docker exec -it cluster-serving bash
```

Start Serving
```
#cluster-serving-start
```

https://github.com/intel-analytics/analytics-zoo/blob/master/docs/docs/ClusterServingGuide/ProgrammingGuide.md

Other names and brands may be claimed as the property of others.
API Introductions

http sync API
- data are represented by json format
- call http post method to enqueue your data into pipeline
- http API is compatible with TFServing*

pub-sub python async API
- data are represented by ndarray
- call python method to enqueue your data into pipeline

*Other names and brands may be claimed as the property of others.
API Introductions - HTTP

http API

data are represented by json format

Support

- scalars
- tensors
- sparse tensors
- image encodings

```
curl -d \
'{
  "instances": [ {
    "IntScalar": 12345,
    "FloatScalar": 3.14159,
    "StringScalar": "hello, world. hello, arrow.",
    "IntTensor": [ 7756, 9549, 1094, 9808, 4959, 3831, 3926, 6578, 1870, 1741 ],
    "FloatTensor": [ 0.6804766, 0.30136853, 0.17394465, 0.44770062, 0.20275887, 0.32762378, 0.45966738, 0.30405,
        "StringTensor": [ "come", "on", "united" ],
    "IntTensor2": [ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ] ],
    "FloatTensor2": [ [ [ 0.2, 0.3 ], [ 0.5, 0.6 ] ], [ [ 0.2, 0.3 ], [ 0.5, 0.6 ] ] ],
    "StringTensor2": [ [ [ "come", "on", "united" ], [ "come", "on", "united" ], [ "come", "on", "united" ] ] ],
  },
  "IntScalar": 12345,
  "FloatScalar": 3.14159,
  "StringScalar": "hello, world. hello, arrow.",
  "IntTensor": [ 7756, 9549, 1094, 9808, 4959, 3831, 3926, 6578, 1870, 1741 ],
  "FloatTensor": [ 0.6804766, 0.30136853, 0.17394465, 0.44770062, 0.20275887, 0.32762378, 0.45966738, 0.30405,
          "StringTensor": [ "come", "on", "united" ],
    "IntTensor2": [ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ] ],
    "FloatTensor2": [ [ [ 0.2, 0.3 ], [ 0.5, 0.6 ] ], [ [ 0.2, 0.3 ], [ 0.5, 0.6 ] ] ],
    "StringTensor2": [ [ [ "come", "on", "united" ], [ "come", "on", "united" ], [ "come", "on", "united" ] ] ],
}
'}
-X POST http://host:port/predict
```

Other names and brands may be claimed as the property of others.
Python API

Data are represented by Python objects.

Support:
- Scalars
- Tensors
- Sparse tensors
- Image encodings

```python
from zoo.serving.client import InputQueue
import numpy as np

input_api = InputQueue()
t1 = np.array([1, 2])
t2 = np.array([[1, 2], [3, 4]])

input_api.enqueue('my-instance', img={"path": 'path/to/image'}, tensor1=t1, tensor2=t2)
```
Outline

Challenges AI productions facing

Integrated Big Data and AI pipeline

Scalable online serving

Cross-industry end-to-end use cases
Garbage classification on Tianchi Competition

Other names and brands may be claimed as the property of others.
Bottleneck:
Preprocessing, inference, up to 1-2 hours per large piece

Other names and brands may be claimed as the property of others.
End-to-End Big Data and AI Pipelines

Seamless Scaling from Laptop to Production

Unified Analytics + AI Platform

Distributed TensorFlow*, Keras*, PyTorch* & BigDL on Apache Spark*

https://github.com/intel-analytics/analytics-zoo

*Other names and brands may be claimed as the property of others.
LEGAL DISCLAIMERS

• Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

• No computer system can be absolutely secure.

• Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo, Xeon, Xeon phi, Lake Crest, etc. are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© 2019 Intel Corporation