Challenges and Experiences with MLOps for Performance Diagnostics in Hybrid-Cloud Enterprise Software Deployments

Amitabha Banerjee
Chien-Chia Chen
Chien-Chun Hung
Xiaobo Huang, Yifan Wang, Razvan Chevesaran

VMware, Inc.
@2020 USENIX Conference on Operational Machine Learning
July 27 – August 3, 2020
Performance Troubleshooting for Hybrid-Cloud Deployments

- VMware has the most large-enterprise customers who deploy our Software-Defined Datacenter (SDDC) stack in both their on-premises datacenters (private cloud) as well as VMware managed public clouds (VMC).
- **Detect** and **root-cause** performance issues at **scale** is extremely challenging.
- Traditional rule-based approach has limitations.
ML-Based Performance Diagnostics Service

- Performance Diagnostics Service
 - Data-driven, ML-based
 - Detection and RCA
 - Unified UX for both on-prem and VMC
 - Decouple intelligence from product releases
 - Proactive: Reduce MTTD and MTTR

Private Cloud
- VMware SDDC Stack

Public Cloud
- VMware SDDC Stack

Telemetry Data

Performance Diagnostics Service

Results

Customer / Cloud Admin
SRE / TSE

VMware Analytics Cloud
Building Performance Diagnostics Service

(1) VMware Analytics Cloud

(2) ML (Manual / Semi-Automated)
- Data Science Experiments
- New Models
- Feature Selection
- Data Curation
- Data Pre-processing
- Model (Re-)Training

(3) Ops (Automated & Continuous)
- Model Updates

(4) Application / Feedback
- Anonymous User Feedback
- Feedback DB
- Engineer Feedback
- VMware Support Insight
- VMware Engineers

Results

Hybrid Cloud

VMware SDDC Stack

CEIP Data

Model Store
(1) VMware Analytics Cloud

- Governed by VMware **CEIP**
 - Privacy: Customers agree to send anonymized data
 - Telemetry data streamed from **all** product deployments (under CEIP)
 - Usage, hardware/software configurations, performance counter readings
 - NO contents and NO logs
 - ACL: Data only available for VMware internal purposes
 - Other data compliance (GDPR/CCPA)
- Consumed by a cloud service designed using Apache Spark
- Performance Diagnostics Service runs as a job in VAC
(2) ML—Performance Issue Detection and RCA

- **Input:** performance counter readings
 - IOPS, I/O throughput, CPU utilization, queue utilization, etc
 - Thousands of counters across SDDC stack

- **Problem (1): Detect performance anomalies**
 - Does the SDDC perform normally?
 - E.g., disk I/O latency is "normal", memory usage is "normal"
 - Data scientists experiment and develop ML models

- **Problem (2): Root Cause Analysis (RCA)**
 - RCA:
 - What is the cause of the anomaly?
 - How to remediate?
 - Explain the anomaly and provide recommendation
 - Statistical learning / unsupervised learning
 - Decision trees, RCA rules, clustering, correlations
 - E.g., if packet drops are abnormally high and I/O latency is also abnormally high,
 Root cause: packet drops -> latency anomaly
 Remediation: Examine physical links/switches and network utilization
(2) ML—Validation

- **Labels**
 - Anomaly labels
 - RCA labels

- **Manual** label
 - Highly depend on product experts

- **Synthesized** label
 - Inject controlled performance perturbation
 - Artificial packet drops, artificial I/O latency, etc
 - Run various synthetic workload on internal testbeds
(3) Ops—Feature Selection

• Fully automated and continuous Ops pipeline

• Feature selection
 • Extremely high dimension
 • Product experts provide candidates sets of features
 • Feature selection pipeline to train models with every feature set
 • Automatic retrain once feature sets change

• Why not all feature combinations?
 • Too many of them → too much resource consumption

• Why not dimension reduction?
 • Doesn’t work; statistical relations ≠ consequential relations

• Why not dimension reduction + some feature engineering?
 • Performance gain doesn’t justify engineering cost
(3) Ops—Data Curation and Pre-processing

- Some models are sensitive to data distribution

- **Data Pre-processing** methods
 - Normalization (standardization, Box-Cox transform, ...etc)
 - Band pass filter → remove outlier
 - Other curation → avoid dividing by zero

- **Pre-processing chain**
 - Series of data transformation
 - Multiple chains according to permutation

- Automatic selection of the best pre-processing chain
(3) Ops—Model (Re-)Training

- **Model offering**
 - Regression, autoencoder, isolation forest, principal component analysis

- **Ensemble**
 - Hyper-parameters: *models, feature sets, pre-processing chains*
 - Determine hyper-parameters with labeled dataset
 - Aggregation of model predictions: boosting, majority vote

- **Custom accuracy metric**: *percentage of correct predictions*
 - Balance false positives and false negatives
 - F1-score does not work well in anomaly detection scenario (i.e., *skewed distribution*)
(3) Ops—Model Serving

- Model store for trained models
 - Model instance
 - Active
 - Version
 - Timestamp
 - Feature set
 - Pre-processing chain
 - Measured accuracy
 - Training dataset

- **Performance Diagnostics Service** chooses a model for inference
 - Most recent
 - Most accurate
 - Specific version (*e.g.*, rollback)
(4) Application / Feedback

VMware SDDC Stack

Hybrid Cloud

Data

Result Reference

VMware Support Insight

Anonymous User Feedback

Feedback DB

ML

Ops

- **Anonymous Engineer Feedback**
- **VMware Support Insight**
- **VMware Engineers**

Summary:
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
- The increase in IO latency in the vSAN stack might be beyond expected limits.
Performance Drift Monitoring

- Monitor changes in accuracy and anomaly detection rate
- Spikes or dips imply performance changes
- Good drifts: thumb-up label to reinforce model training
Handling New Performance Issues

- Bad drifts: might indicate new, unseen performance issues
- Require manual RCA to determine actions
 - Either fix product or change model
Put Everything in Production!
Takeaways

• **Continuous and automated training and serving**
 • Automatic feedback consumption
 • Keep the production models up-to-date without human intervention

• **Monitoring dashboard in production**
 • Visualize the deployment performance for easier tracking and alerting

• **Orchestrated experiment environment**
 • Validate model behavior with synthesized setup and data
Thank You

{banerjeea,chien-chiachen,hchienchun}@vmware.com

ACKNOWLEDGEMENT

VMware Analytics Cloud Team
VMware Support Insight Team
VMware Research Group
Parikshit Gopalan
Udi Wieder

VMware Performance Group
Rajesh Somasundaran
Bruce Herndon
Chuck Lintell