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Latency in Data Centers

/“l Latency is becoming a primary

performance metric in DC

* Low latency applications
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— High-frequency trading

— High-performance computing
— Large-scale web applications
— RAMClouds (want < 10us RPCs)

s * Desire predictable low-latency
- amazon delivery of individual packets
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Why Does Latency Matter?

Who does she know?
What has she done?
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* Possibly 1000s of RPCs per operation - &

» Microseconds matter, even at the tail Data Center
(e.g., 99.9th percentile)




Reducing Latency

e Software and hardware are improving
— Kernel bypass, RDMA; RAMCloud: software processing ~1us
— Low latency switches forward packets in a few 100ns

— Baseline fabric latency (propagation, switching) under
10us is achievable.

* Queuing delay: random and traffic dependent

— Can easily reach 100s of microseconds or even milliseconds
* One 1500B packet =12us @ 1Gbps

Goal: Reduce queuing delays to zero.




Low Latency AND High Throughput

Data Center Workloads:

* Short messages [100B-10KB] =2 Lowafenty

e Large flows [1MB-100MB] — Higheput

We want baseline fabric latency

AND high throughput.




Why do we need buffers?

* Main reason: to create “slack”
— Handle temporary oversubscription
— Absorb TCP’s rate fluctuations as it discovers path bandwidth

 Example: Bandwidth-delay product rule of thumb
— A single TCP flow needs CxRTT buffers for 100% Throughput.

4 B < CxRTT 4 B 2 CxRTT

Buffer Size

100% |- - - == 100%
Ve 4 vV’ °

Throughput




Overview of our Approach

Main Idea
* Use “phantom queues” @

— Signal congestion before any queuing occurs

e Use DCTCP [SIGCOMM’10]
— Mitigate throughput loss that can occur without buffers

* Use hardware pacers

— Combat burstiness due to offload mechanisms like LSO
and Interrupt coalescing



Review: DCTCP

Switch: B mark K Don’t
I Mark
* Set ECN Mark when Queue Length > K. -
|
Source:

* React in proportion to the extent of congestion = less fluctuations
— Reduce window size based on fraction of marked packets.

ECN Marks TCP DCTCP

1011110111 Cut window by 50% Cut window by 40%

0000000001 Cut window by 50% Cut window by 5%



Queue Length (Kbytes)
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Setup: Win 7, Broadcom 1Gbps Switch

Scenario: 2 long-lived flows,

0 %* From Alizadeh et al
ECN Marking Thresh = 30KB

[SIGCOMM’10]
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Achieving Zero Queuing Delay

TCP
Incoming
Traffic —

TCP:
~1-10ms

Incoming
Traffic —

-

DCTCP |$
|
I
I
|

DCTCP:
~100ps

~Zero Latency

How do we get this? m/
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Phantom Queue

* Key idea:
— Associate congestion with link utilization, not buffer occupancy
— Virtual Queue (Gibbens & Kelly 1999, Kunniyur & Srikant 2001)

Switch
Link
Speed C
-> f—
Markllng Thresh. Bump on Wire
>: (NetFPGA implementation)
|

Y < 1: Creates

“bandwidth
headroom”
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Throughput & Latency

vs. PQ Drain Rate

Throughput Switch latency (mean)
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The Need for Pacing

 TCP traffic is very bursty

— Made worse by CPU-offload optimizations like Large Send
Offload and Interrupt Coalescing

— Causes spikes in queuing, increasing latency

Example. 1Gbps flow on 10G NIC
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Impact of Interrupt Coalescing

Interrupt
Coalescing

disabled

rx-frames=2

rx-f

rx-fr

rx-fra

es=8
es=32
=128

More Interrupt
Coalescing

Receiver

CPU (%)

99
98.7
75
53.2
30.7

N

(Gbps)
7.7
9.3
9.5
9.5
9.5

Lower CPU Utilization
& Higher Throughput

Throughput Burst Size

(KB)
67.4
11.4
12.2
16.5
64.0

N

More

Burstiness ..



Hardware Pacer Module

* Algorithmic challenges:
— At what rate to pace?

* Found dynamically: R <— (1 - TI)R + aneaswed + /J)QTB
— Which flows to pace?

* Elephants: On each ACK with ECN bit set, begin pacing the flow
with some probability.

Token Bucket

Rate Limiter
Flow —>  [Qqp R
> Association TX
Outgoing Packets Table \vg
From Un-paced

Server NIC Traffic
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Throughput & Latency

vs. PQ Drain Rate
(with Pacing)

Throughput Switch latency (mean)
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Mean Switch Latency [us]
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e e

99th Percentile Latency [us]
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The HULL Architecture

-

Phantom
Queue

Hardware

Pacer

N /

4 )
DCTCP

Congestion
Control




Implementation and Evaluation

* Implementation

NF6

— PQ, Pacer, and Latency Measurement %NW_E lNF3
. . SWi1

modules implemented in NetFPGA E_LNFZZ :NF4

— DCTCP in Linux (patch available online) [s4)" I

NF5

* Evaluation

— 10 server testbed

— Numerous micro-benchmarks
 Static & dynamic workloads
e Comparison with ‘ideal’ 2-priority QoS scheme
* Different marking thresholds, switch buffer sizes
e Effect of parameters

— Large-scale ns-2 simulations



Dynamic Flow Experiment

20% load

* 9senders =2 1 receiver (80% 1KB flows, 20% 10MB flows).

Switch Latency (us) 10MB FCT (ms)

Load: 20%
Avg 99th Avg g9th
TCP 111.5 1,224.8 110.2 349.6
DCTCP-30K 295.2 106.8 301.7
DCTCP-6K-Pacer 6.6 59.7 111.8 320.0

DCTCP-PQ950-Pacer 18.6 359.9
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Conclusion

e The HULL architecture combines

— Phantom queues
— DCTCP
— Hardware pacing

 We trade some bandwidth (that is relatively plentiful)
for significant latency reductions (often 10-40x
compared to TCP and DCTCP).
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Thank you!



