Is Big Data Performance Reproducible in Modern Cloud Networks?

Alex Uta, A.Custura, D. Duplyakin, I. Jimenez, J.S. Rellermeyer, C. Maltzahn, R. Ricci, A. Iosup

a.uta@vu.nl
Big data infrastructure in the cloud

• Many big data frameworks, infrastructure
• Designed by both industry and academia
• Highly embedded in the cloud
• Every new system/release, research paper means performance evaluation

Image courtesy of mattturck.com
How do we assess performance (in the cloud)?

Performance evaluation is inherently difficult in systems research.

- Do we understand the underlying conditions?

Cloud exacerbates performance variability.

- How many times do we run experiments in the cloud?
- What do we report? (means, medians, distributions)
Cloud performance is variable

- Due to:
 - Co-location
 - Virtualization
 - Network congestion
 - “noisy neighbors”
 - Provider QoS policies

- Focus on networks:

Cloud variability affects our experiments.

Ballani et al., SIGCOMM 2011
Agenda & Findings

1. Variability disregarded in cloud performance evaluations
2. Clouds (still) highly variable in network performance
3. Big data performance evaluations impacted by cloud network variability
4. Advice to achieve (more) reproducible performance
Variability is disconsidered in performance evaluations

- Systematic survey -- 4 top systems conferences
- Time frame: 2010 – 2018
- Articles on: big data, analytics, data science, graph processing, streaming, MapReduce, Hadoop, Spark
- Systems evaluated on clouds

44 articles > 11,000 citations
Variability is disconsidered in performance evaluations

Questions asked:

• How many runs/trials?

• Is the article reporting averages/medians over a number of runs/trials?

• Is the article reporting experiment variability? (error-bars, min-max, percentiles)
Questions asked:

• How many runs/trials?

• Is the article reporting averages/medians over a number of runs/trials?

• Is the article reporting experiment variability? (error-bars, min-max, percentiles)

Variability is disconsidered in performance evaluations
Variability is disconsidered in performance evaluations

Questions asked:

• How many runs/trials?

• Is the article reporting averages/medians over a number of runs/trials?

• Is the article reporting variability? (error-bars, min-max, percentiles)
Main findings:

• Most articles report 3-10 repetitions, few report > 10

• > 50% of articles have no or poor experiment specification!

• < 50% report only average or median

• ~ 40% report variability

• Cited articles > 11,000 citations
Is Big Data Performance Reproducible in Modern Cloud Networks?

Spoiler alert: not so much…
Experiment Design (1) -- Measuring the Cloud

- 2 commercial clouds: Amazon EC2, Google
- 1 private, research cloud: HPCCloud – SURF, in NL

- Measured bandwidth and latency for multiple instance types for a **week**
 - Only some instance types, budget limited

- Multiple communication patterns, to mimic real-world applications:
 - Continuous streaming
 - Intermittent communication:
 - 5 second stream, 30 second pause
 - 10 second stream, 30 second pause
Performance vs. stochastic noise

- **Problem:** Underlying cloud performance varies between and during experiments.

- **Mitigation:** Establish baselines of platform performance (microbenchmark the platform before running apps) and publish together with application performance.
Performance vs. Provider QoS policies

- **Problem:** Experiment might interact with provider policies.

![Token bucket behavior – QoS Policy in Amazon EC2](image-url)
Performance vs. Provider QoS policies

- **Problem:** Experiment might interact with provider policies.

- **Mitigation:** Detect interaction with the provider (look for behavior that breaks assumptions, i.e., token buckets) and document these.

![Token bucket behavior – QoS Policy in Amazon EC2](image-url)
Main Findings – Modern Cloud Networks

- Large amounts of variability, quantified
- Variability depends on access pattern
- Different behavior between providers

- Two types of variability:
 - (Similar to) Stochastic noise
 - Given by provider QoS policies

What does this mean for big data experiments?

First to quantify
Experiment Design (2) -- Reproducing App Performance

- Apps = Benchmarking suites: HiBench and TPC-DS
- Platform: Apache Spark
- **Stochastic noise**: ran directly on Google GCE and HPCCloud, NL
- **QoS Policies**: emulate AWS Token Bucket on own infrastructure
How to run repeatable experiments?

- **Problem:** Interference (stochastic noise) affects experiments.

- **Mitigation:** Stochastic variability is tamed through robust experimentation (repeated experiments and statistics reported). Go beyond 10-15 experiment trials.
How to run repeatable experiments?

• **Problem:** Repeated experiments might influence each other.

• **Mitigation:** Randomize experiment order, re-use machines sparingly, try different days, “rest” infrastructure.
TL;DR: run more experiments

- Network performance variability is a widespread phenomenon
- Systems community often neglects performance variability in evaluations
- Important reproducibility problem in computer systems
- Reliable, repeatable performance == more runs than most articles do
- 1st to quantify, but further community-effort needed to tackle it

DOI: 10.5281/zenodo.3576604