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Edge cache

CDN Caching Goal: Minimize WAN Traffic 
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Caching Remains Challenging
Heuristic-based algorithms (1965–): LRU, LRUK, GDSF, ARC, ...
● Work well for some workloads, but work poorly for other
ML-based adaptation of heuristics (2017–): UCB, LeCAR, ...
● Also work well for some workloads, but poorly for others
Belady’s MIN algorithm (1966)
● Oracle: requires future knowledge
● Large gap in byte miss ratio between state-of-the-art and Belady:
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● 20–40% on production traces



Introducing Learning Relaxed Belady (LRB)

New approach: mimic Belady using machine learning
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General Overview of our Approach
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Challenge 1: Past Information
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More data improves training 
but increases mem overhead



Challenge 2: Generate Online Training Data
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Challenge 3: ML Architecture
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Large design space: 
features, model, prediction 
target, loss function



Challenge 4: Eviction Candidates
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Challenge 5: Quickly Evaluate Design Decisions
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Solutions: Relaxed Belady Algorithm & Good Decision Ratio

End-to-end evaluation: days
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Solutions: Relaxed Belady Algorithm & Good Decision Ratio

Relaxed Belady algorithm 

Good decision ratio: minsEnd-to-end evaluation: days
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Solutions: Relaxed Belady Algorithm & Good Decision Ratio

End-to-end evaluation: days

How to select evict candidates?

What past information to use? 

Generate online training data?

What ML architecture to select?
Relaxed Belady algorithm 

Good decision ratio: mins
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Challenge: Hard to Mimic Belady (Oracle) Algorithm

Mimicking exact Belady is impractical 
● Need predictions for all objects → prohibitive computational cost
● Need exact prediction of next access → further prediction are harder

Belady: evict object with next access farthest in the future
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Introducing the Relaxed Belady Algorithm

Observation:  many objects are good candidates for eviction

Relaxed Belady evicts an objects beyond boundary
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● Do not need predictions for all objects → reasonable computation
● No need to differentiate beyond boundary → simplifies the prediction



Good Decision Ratio: Directly Measures Eviction Decisions

Insight: relaxed Belady enables evaluating eviction decisions

Good decision ratio: 

Bad eviction decision 
evicted obj’s next access < boundary 

# good eviction decisions 
 # total eviction decisions

Good eviction decision 
evicted obj’s next access > boundary 
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Belady boundary

Time to next request



Challenge 5: Quickly Evaluate Design Decisions
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Evaluate Design Decisions w/o Simulation
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Simulate once,
reuse for many designs

Evaluate designs on log using good decision ratio in minutes



Challenge 1: Past Information
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Track Objects within a Sliding Memory Window

Per object features
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Window size is LRB’s main hyperparameter



Challenge 2: Training Data
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Sample Training Data & Label on Access or Boundary

Per object features

R R R R R R·········

Now

R

Sliding memory window

Sample

Unlabeled training data

Past memory windowAccess

Labeled training data

22



Challenge 3: ML Architecture

Large potential design space
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Solution 3: Feature & Model Selection

Gradient boosting decision trees

Lightweight & high good decision ratio

Training ~300 ms, prediction ~30 us

Features

Object size

Object type

Inter-request distances
(recency)

Exponential decay counters 
(long-term frequencies)

Use good decision ratio to evaluate new designs
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Challenge 4: Eviction Candidates
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Solution 4: Random Sampling for Eviction

Can mimic relaxed Belady if we can
find 1 object beyond the boundary

k=64 candidates; more does not improve 
good decision ratio
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Label

Labeled dataset

Sample

Unlabeled dataset

Learning Relaxed Belady
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● Simulator implementation
○ LRB + 14 other algorithms

● Prototype implementation
○ C++ on top of production system (Apache Traffic Server)
○ Many optimizations

Implementation
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● Q1: Learning Relaxed Belady (LRB) traffic reduction vs state-of-the-art

● Q2: overhead of LRB vs CDN production system

● Traces: 6 production traces from 3 CDNs

● Hyperparameter (memory window/model/...) tuned on 20% of trace

Evaluation Setup
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LRB Reduces WAN Traffic
20% traffic reduction over B-LRU
10% reduction over the best SOA

Wikipedia trace

Industry standard

30



CDN-B1 CDN-B3CDN-B2

LRB Consistently Improves on the State of the Art

Wikipedia CDN-A1 CDN-A2
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LRB Overhead Is Modest 

Throughput: 11.7 Gbps vs 11.7 Gbps (unmodified)

Memory overhead=1‒3% cache size

Peak CPU: 16% vs 9% (unmodified) 
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Conclusion
● LRB reduces WAN traffic with modest overhead

● Key insight: relaxed Belady

      → Simplifies machine learning & reduces system overhead

      → Good decision ratio enables fast design evaluation & design iteration

Code & Wikipedia trace: 
https://github.com/sunnyszy/lrb
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