
Learning Relaxed Belady
for Content Delivery Network Caching

Zhenyu Song, Daniel S. Berger, Kai Li, Wyatt Lloyd

NSDI 2020

Edge cache

CDN Caching Goal: Minimize WAN Traffic

Requests

Miss
Hit

User

Requests

Wide Area Network (WAN)
traffic is expensive

miss bytes
total bytesKey metric byte miss ratio:

2

Caching Remains Challenging
Heuristic-based algorithms (1965–): LRU, LRUK, GDSF, ARC, ...
● Work well for some workloads, but work poorly for other
ML-based adaptation of heuristics (2017–): UCB, LeCAR, ...
● Also work well for some workloads, but poorly for others
Belady’s MIN algorithm (1966)
● Oracle: requires future knowledge
● Large gap in byte miss ratio between state-of-the-art and Belady:

3

● 20–40% on production traces

Introducing Learning Relaxed Belady (LRB)

New approach: mimic Belady using machine learning

4

General Overview of our Approach

R R R R R R·········

Now

Cache

R

Past information

ML
architecture

Training data

Eviction
candidates

5

Challenge 1: Past Information

R R R R R R·········

Now

Cache

R
What past information to use?

Past information

ML
architecture

Training data

Eviction
candidates

6

More data improves training
but increases mem overhead

Challenge 2: Generate Online Training Data

R R R R R R·········

Now

Cache

R
What past information to use?

Generate online training data?

Past information

ML
architecture

Training data

Eviction
candidates

7

Challenge 3: ML Architecture

R R R R R R·········

Now

Cache

R
What past information to use?

Generate online training data?

What ML architecture to select?

Past information

ML
architecture

Training data

Eviction
candidates

8

Large design space:
features, model, prediction
target, loss function

Challenge 4: Eviction Candidates

R R R R R R·········

Now

Cache

R

Past information

ML
architecture

Training data

Eviction
candidates

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?

9

Challenge 5: Quickly Evaluate Design Decisions

R R R R R R·········

Now

Cache

R

End-to-end evaluation: days

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?

Past information

ML
architecture

Training data

Eviction
candidates

10

Solutions: Relaxed Belady Algorithm & Good Decision Ratio

End-to-end evaluation: days

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?
Relaxed Belady algorithm

Good decision ratio

11

Solutions: Relaxed Belady Algorithm & Good Decision Ratio

Relaxed Belady algorithm

Good decision ratio: minsEnd-to-end evaluation: days

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?

12

Solutions: Relaxed Belady Algorithm & Good Decision Ratio

End-to-end evaluation: days

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?
Relaxed Belady algorithm

Good decision ratio: mins

13

Challenge: Hard to Mimic Belady (Oracle) Algorithm

Mimicking exact Belady is impractical
● Need predictions for all objects → prohibitive computational cost
● Need exact prediction of next access → further prediction are harder

Belady: evict object with next access farthest in the future

14

Cache
 (now)

A
······

B

C D

Time to next request

D B A C······ ······

Evict

Introducing the Relaxed Belady Algorithm

Observation: many objects are good candidates for eviction

Relaxed Belady evicts an objects beyond boundary

15

Cache
 (now)

A
······

B

C D

Time to next request

D B A C······ ······

EvictBelady boundary

● Do not need predictions for all objects → reasonable computation
● No need to differentiate beyond boundary → simplifies the prediction

Good Decision Ratio: Directly Measures Eviction Decisions

Insight: relaxed Belady enables evaluating eviction decisions

Good decision ratio:

Bad eviction decision
evicted obj’s next access < boundary

good eviction decisions
 # total eviction decisions

Good eviction decision
evicted obj’s next access > boundary

16

Belady boundary

Time to next request

Challenge 5: Quickly Evaluate Design Decisions

R R R R R R·········

Now

Cache

R

End-to-end evaluation: days

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?

Past information

ML
architecture

Training data

Eviction
candidates

17

Evaluate Design Decisions w/o Simulation

ML
architecture

Training data

Eviction
candidates

Log

18

Simulate once,
reuse for many designs

Evaluate designs on log using good decision ratio in minutes

Challenge 1: Past Information

R R R R R R·········

ML
architecture

Training data

Eviction
candidates

More data improves training
but increases mem overhead

Past information
What past information to use? Now

Cache

R

19

Track Objects within a Sliding Memory Window

Per object features

R R R R R R·········

Now

R

Sliding memory window mimics Belady boundary

Only track objects within memory window

20

Window size is LRB’s main hyperparameter

Challenge 2: Training Data

R R R R R R·········

Now

Cache

R
What past information to use?

Generate online training data?

Past information

ML
architecture

Training data

Eviction
candidates

21

Sample Training Data & Label on Access or Boundary

Per object features

R R R R R R·········

Now

R

Sliding memory window

Sample

Unlabeled training data

Past memory windowAccess

Labeled training data

22

Challenge 3: ML Architecture

Large potential design space

R R R R R R·········

Now

Cache

R
What past information to use?

Generate online training data?

What ML architecture to select?

Past information

ML
architecture

Training data

Eviction
candidates

23

Solution 3: Feature & Model Selection

Gradient boosting decision trees

Lightweight & high good decision ratio

Training ~300 ms, prediction ~30 us

Features

Object size

Object type

Inter-request distances
(recency)

Exponential decay counters
(long-term frequencies)

Use good decision ratio to evaluate new designs

24

Challenge 4: Eviction Candidates

R R R R R R·········

Now

Cache

R

Past information

ML
architecture

Training data

Eviction
candidates

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?

25

Solution 4: Random Sampling for Eviction

Can mimic relaxed Belady if we can
find 1 object beyond the boundary

k=64 candidates; more does not improve
good decision ratio

R R R R R R·········

Now

Cache

R

Past information

Random k
candidates

26

Label

Labeled dataset

Sample

Unlabeled dataset

Learning Relaxed Belady

27

Now

Cache

RR R R R R R······

Memory window

RR

Train

Model Eviction
Candidates

···

Sample

Predict

Evict

● Simulator implementation
○ LRB + 14 other algorithms

● Prototype implementation
○ C++ on top of production system (Apache Traffic Server)
○ Many optimizations

Implementation

28

● Q1: Learning Relaxed Belady (LRB) traffic reduction vs state-of-the-art

● Q2: overhead of LRB vs CDN production system

● Traces: 6 production traces from 3 CDNs

● Hyperparameter (memory window/model/...) tuned on 20% of trace

Evaluation Setup

29

LRB Reduces WAN Traffic
20% traffic reduction over B-LRU
10% reduction over the best SOA

Wikipedia trace

Industry standard

30

CDN-B1 CDN-B3CDN-B2

LRB Consistently Improves on the State of the Art

Wikipedia CDN-A1 CDN-A2

31

LRB Overhead Is Modest

Throughput: 11.7 Gbps vs 11.7 Gbps (unmodified)

Memory overhead=1‒3% cache size

Peak CPU: 16% vs 9% (unmodified)

32

Edge cache

Requests

User

Conclusion
● LRB reduces WAN traffic with modest overhead

● Key insight: relaxed Belady

 → Simplifies machine learning & reduces system overhead

 → Good decision ratio enables fast design evaluation & design iteration

Code & Wikipedia trace:
https://github.com/sunnyszy/lrb

33

