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WRF: Largest Weather 
forecast simulation

HPC solves critical science, finance, AI, and other problems

Hurricane detector using AI
(Courtesy: Nvidia)

High-Performance Computing (HPC)
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forecast simulation
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High-Performance Computing (HPC)

HPC on Cloud HPC in Academic and National Labs  

NCSA (UIUC) Oakridge National Lab
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High-Performance Computing (HPC)

High-speed Networks
(HSN)

• Low per-hop latency [1][2]
• Low tail-latency variation 
• High bisection bandwidth

[1] https://www.nextplatform.com/2018/03/27/in-modern-datacenters-the-latency-tail-wags-the-network-dog/
[2] https://blog.mellanox.com/2017/05/microsoft-enhanced-azure-cloud-efficiency/

https://www.nextplatform.com/2018/03/27/in-modern-datacenters-the-latency-tail-wags-the-network-dog/
https://blog.mellanox.com/2017/05/microsoft-enhanced-azure-cloud-efficiency/


Networking and Performance Variation
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Despite the low-latency, high-speed networks (HSN) are susceptible to high congestion

Such congestion can cause up to 2-4X  application performance variation in production settings 
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Up to 𝟏. 𝟖𝟗× slowdown compared 
to median runtime of 282 minutes

1000-node production molecular 
dynamics code.

256-node benchmark app 
(AMR)

Up to 4× slowdown compared to the 
median loop iteration time of 2.5 sec



Networking and Performance Variation
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Despite low-latency, high-speed networks (HSN) susceptible to high congestion

Such congestion can lead to up to 2-3X application performance variation in production settings 

Questions:
• How often system/applications are experiencing congestion ? [Characterization]

• What are the culprits behind congestion? [Diagnostics] 
• How to avoid and mitigate effects of congestion ? [Network and System Design] 



Highlights
• Created data mining and ML-driven methodology and associated framework for

• Characterizing network design and congestion problems using empirical data
• Identifying factors leading to the congestion on a live system
• Checking if the application slowdown was indeed due to congestion

• Empirical evaluation of a real-world large-scale supercomputer: Blue Waters at NCSA
• Largest 3D Torus network in the world
• 5 months of operational data
• 815,006 unique application runs 
• 70 PB of data injected into the network

• Largest dataset on congestion (first on HPC networks)
• Dataset (51 downloads and counting!) and code released 
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Key Findings
• HSN congestion is the biggest contributor to app performance variation

• Continuous presence of high congestion regions
• Long lived congestion (may persist for >23 hours)

• Default congestion mitigation mechanism have limited efficacy
• Only 8 % (261 of 3390 cases) of high congestion cases found using our framework were detected and 

acted by default congestion mitigation algorithm
• In ~30% of the cases the default congestion mitigation algorithm was unable to alleviate congestion

• Congestion patterns and their tracking enables identification of culprits behind 
congestion
• critical to system and application performance improvements
• E.g., intra-app congestion can be fixed by changing allocation and mapping strategies
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congestion region



Congestion in credit-based flow control Network
• Focus on evaluation of credit-based flow control transmission protocol  

• Flit is the smallest unit of datum that can be transferred

• Flits are not dropped during congestion

• Backpressure (credits) provides congestion control

link
Switch 1 Switch 2

FLIT

If credit > 0, flit can be sent

FLITFLIT

Available Credits: 3210

FLIT

If credit = 0, flit cannot be sent
8



Measuring Congestion
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link
Switch 1 Switch 2

Indicates flit waiting 
(no credit available, 
allocated buffer full)

Indicates link is transmitting

Time

𝑷𝑻𝒔𝒊 = 𝟏𝟎𝟎 ×
𝑻𝒔𝒊

𝑻𝒊
= 100 ×

5
12

= 41.67 %

Congestion measured using Percent time stalled (𝑃!")

𝑻𝒊: # network cycles in 𝑖$% measurement interval (fixed 
value)
𝑻𝒔𝒊 : # total cycles the link was stalled in 𝑇& (i.e., flit was 
ready to be sent but no credits available.)

12 cycles



link 1
Switch 1 Switch 2

FLIT

If credit = 0, flit cannot be sent

FLIT

FLIT

Available Credits: 0

Congestion in credit-based flow control Network

Switch 3

Switch 4

link 2

link 3

Insight: Congestion spreads locally (i.e., fans 
out from an origin point to other senders).
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Congestion in credit-based flow control Network

Switch 3

Switch 4

link 2

link 3

Insight: Congestion spreads locally (i.e., fans 
out from an origin point to other senders).

Congestion Visualization
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New unit for measuring congestion
Measure congestion in terms of 
regions, their size and severity

Unsupervised clustering

distance is small:
dδ(x,y) ≤ δ

stall difference is small:
dλ(xs −ys) ≤ θp

Low: 5% < 𝑃!" ≤ 15%

Med: 15% < 𝑃!" ≤ 25%

High: 25% < 𝑃!"

Neg: 0% < 𝑃!" ≤ 5%

Raw Congestion Visualization
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Congestion Regions Proxy for Performance Evaluation

Congestion-Informed 
Segmentation algorithm

Congestion Regions (CRs) captures relation between congestion severity and application 
slowdown and therefore can be used for live forensics and debugging!

(details in paper)
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1000-node production molecular 
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Infiniband network (IB)

Metadata Targets (MDT) 
[1–10]

Object Storage Targets (OST)
[1—N]

Metadata 
Servers (MDS)

Object Storage 
Servers (OSS)

MDS 1 MDS 2 OSS 1 OSS 2

Failover pair Failover pair

Login 
nodes

Import  
export nodes 3-D Torus Cray Gemini Network 

⇥N
<latexit sha1_base64="ptZDU7z4qZPBBidzKYRMGzDZSmQ=">AAAB73icdVBNS8NAEN3Ur1q/qh69LBbBU0hqaOut6MWTVLAf0Iay2W7apZtN3J0IpfRPePGgiFf/jjf/jZu2goo+GHi8N8PMvCARXIPjfFi5ldW19Y38ZmFre2d3r7h/0NJxqihr0ljEqhMQzQSXrAkcBOskipEoEKwdjC8zv33PlOaxvIVJwvyIDCUPOSVgpE4PeMQ0vu4XS47tld2a5+GMVM6rtQWpVCvYtZ05SmiJRr/43hvENI2YBCqI1l3XScCfEgWcCjYr9FLNEkLHZMi6hkpi1vjT+b0zfGKUAQ5jZUoCnqvfJ6Yk0noSBaYzIjDSv71M/MvrphDW/CmXSQpM0sWiMBUYYpw9jwdcMQpiYgihiptbMR0RRSiYiAomhK9P8f+kVbbdM9u58Ur1i2UceXSEjtEpclEV1dEVaqAmokigB/SEnq0769F6sV4XrTlrOXOIfsB6+wQueJAS</latexit>

Cray Gemini Switch

• Topology: 3D Torus (24x24x24)
• Compute nodes : 28K nodes
• Avg. Bisection Bandwidth: 17550 GB/sec
• Per hop latency: 105 ns [1]

Courtesy: Cray Inc. (HP)

System, Monitors, and Datasets

Blue Waters Networks

[1] https://wiki.alcf.anl.gov/parts/images/2/2c/Gemini-whitepaper.pdf
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Network 
Failures

Performance 
counters

Workload

15 TB

100 GB

8 GB

Cray Network 
Monitors

Lightweight 
Distributed 
Metric service 
(LDMS) [2]

Scheduler

Characterization
(5 months)

Live Analytics
(60 seconds)

~

40 MB

55 MB

[2] A. Agelastos et al. Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Monitoring of Large-scale Computing Systems 
and Applications. In SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, pages 154–165, 2014. 

Infiniband network (IB)

Metadata Targets (MDT) 
[1–10]

Object Storage Targets (OST)
[1—N]

Metadata 
Servers (MDS)

Object Storage 
Servers (OSS)

MDS 1 MDS 2 OSS 1 OSS 2

Failover pair Failover pair

Login 
nodes

Import  
export nodes 3-D Torus Cray Gemini Network 

⇥N
<latexit sha1_base64="ptZDU7z4qZPBBidzKYRMGzDZSmQ=">AAAB73icdVBNS8NAEN3Ur1q/qh69LBbBU0hqaOut6MWTVLAf0Iay2W7apZtN3J0IpfRPePGgiFf/jjf/jZu2goo+GHi8N8PMvCARXIPjfFi5ldW19Y38ZmFre2d3r7h/0NJxqihr0ljEqhMQzQSXrAkcBOskipEoEKwdjC8zv33PlOaxvIVJwvyIDCUPOSVgpE4PeMQ0vu4XS47tld2a5+GMVM6rtQWpVCvYtZ05SmiJRr/43hvENI2YBCqI1l3XScCfEgWcCjYr9FLNEkLHZMi6hkpi1vjT+b0zfGKUAQ5jZUoCnqvfJ6Yk0noSBaYzIjDSv71M/MvrphDW/CmXSQpM0sWiMBUYYpw9jwdcMQpiYgihiptbMR0RRSiYiAomhK9P8f+kVbbdM9u58Ur1i2UceXSEjtEpclEV1dEVaqAmokigB/SEnq0769F6sV4XrTlrOXOIfsB6+wQueJAS</latexit>

Cray Gemini Switch

Monitoring logs

• Topology: 3D Torus (24x24x24)
• Compute nodes : 28K nodes
• Avg. Bisection Bandwidth: 17550 GB/sec
• Per hop latency: 105 ns [1]

Courtesy: Cray Inc. (HP)

System, Monitors, and Datasets

Blue Waters Networks

[1] https://wiki.alcf.anl.gov/parts/images/2/2c/Gemini-whitepaper.pdf



1. Congestion is the biggest contributor to app performance variation

Long-lived congestion
• Congestion Region can persist up to ~24 

hours 
(median: 9.7 hours)

• Congestion Region count decreases with 
increasing duration 
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2. Limited efficacy of default congestion detection and mitigation 
mechanisms
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Before congestion mitigation After congestion mitigation

Default system congestion 
detection and mitigation

Median: 7 hours

• #congestion mitigating triggered : 261

• Median time between events: 7 hours

• Failed to alleviate congestion in 29.8% cases

Default mitigation throttles all NICs such that 

aggregate traffic injection bandwidth across all 
nodes  < single node bandwidth ejection  



2. Limited efficacy of default congestion detection and mitigation 
algorithms
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Only 8 % (261 of 3390 cases) of high congestion 
cases found by Monet were detected and acted by 
default congestion mitigation algorithm

Default system congestion 
detection and mitigation

Median: 7 hours, #events: 261

Monet detection

Median: 58 minutes, #events: 3390

• Default congestion mitigating triggered : 261

• Median time between events: 7 hours

• Failed to alleviate congestion in 29.8% of the 
cases



3. Congestion patterns and their tracking enables identification of culprits 
behind congestion
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App traffic 
pattern 
changes

System load 
changes

Link failure

[1] J Enos et al. Topology-aware job scheduling strategies for torus networks. In Proc. Cray User Group, 2014. 

• Network design and congestion-
aware scheduling 

• E.g., topology-aware scheduling 
[1] improved system throughput 
by 56% by tuning resource 
allocation strategies



3. Congestion patterns and their tracking enables identification of culprits 
behind congestion
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App traffic 
pattern 
changes

System load 
changes

Link failure

[2] Galvez et al. Automatic topology mapping of diverse large-scale parallel applications. In Proceedings of the International Conference on Supercomputing, ICS ’17, pages 17:1–17:10, New York, NY, USA, 2017. ACM. 

• Node mapping within the 
allocation reduces intra-app 
congestion

• E.g., TopoMapping [2] for finding 
optimal process rank mapping 
for the allocated resource



21

Conclusion

• Developed and validated the proposed methodology on production datasets

• Code and dataset online (51 downloads and counting!)
• https://databank.illinois.edu/datasets/IDB-2921318
• https://github.com/CSLDepend/monet

https://databank.illinois.edu/datasets/IDB-2921318
https://github.com/CSLDepend/monet
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Future Work  

Congestion Visualization on a production 
Cray Aries (DragonFly Network)

Developing workload-aware high-speed networks 
• Inferring and meeting application demands 
• Optimizing congestion control and routing 

strategies 

Congestion avoidance and mitigation is an 
ongoing problem !

Meet us at the poster 
session! 

Wednesday 6:30 PM - 8:00 PM
Cypress Room



Questions?

23


