Telekine: Secure Computing with Cloud GPUs

NSDI 2020

Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christopher J. Rossbach, Emmett Witchel
Trusting the cloud provider is difficult

- Attackers can exploit system bugs to steal data
- The cloud provider has their own interests (e.g., monetizing user data)
- Many administrators; some may be malicious
Avoiding trust in the cloud provider is difficult

Legend:

- Trusted
- Untrusted
- Data

OS/Hypervisor allows provider to see user’s secret data
Introduce TEEs to isolate computation

(TEE is Trusted Execution Environment)

• TEEs cannot be bypassed by software
 - Hardware root of trust (e.g., SGX on Intel, TrustZone on ARM)

• Protect communication from the provider with cryptography

• Research proposals exist for GPU TEEs
 - Graviton [OSDI’18], HIX [ASPLOS’19]
 - Performance critical hardware unchanged
TEEs have limitations

Mitigations require heroic effort, especially for complex software
Telekine addresses TEE limitations
Telekine uses API-remoting instead of CPU TEEs

- Interpose on GPU API calls
- Application does not have to be modified, user does not need GPU
- Turn every API call into an RPC, executed by the remote machine
- Traffic is encrypted/authenticated; the proxy does not need protection
TEEs still have limitations

Legend:
- Trusted
- Untrusted
- Data

All TEEs: Communication timing attacks
Telekine addresses communication timing channels

• TEEs do not consider communication side channels
 - Securing the processor (CPU/GPU) does not secure communication

• GPU programing paradigm features frequent communication
 - CPU-to-CPU communication is also vulnerable

• Communication patterns tend to leak timing information
 - E.g., GPU kernel execution time
In the rest of the talk we will answer:

• Can information be extracted from GPU communication patterns?

 Yes, we demonstrate a communication timing attack

• How does Telekine remove that information?

 Replace GPU streams with new data-oblivious streams

• What are Telekine’s overheads?

 Overheads are reasonable: ~20% for neural network training
Expanded image recognition

Legend:

- Trusted
- Untrusted
- Data
Expanded image recognition

Tensorflow/MXNet

memcpy()

launchKernel(1)

.

launchKernel(n)

memcpy()

GPU Stream

Neural Net State/Code

Legend:
- Trusted
- Untrusted
- Data

Kernel execution times!

GPU raises interrupt on kernel completion
Information gained from kernel execution time

[Graph showing the relationship between Number of Classes and Classification Accuracy, with two lines indicating GPU Kernel timing classifier and Random Guess, demonstrating a 1.6X improvement in accuracy.]
In the rest of the talk we will answer:

• Can information be extracted from GPU communication patterns?
 Yes, we demonstrate a communication timing attack

• How does Telekine remove that information?
 Replace GPU streams with new data-oblivious streams

• What are Telekine’s overheads?
 Overheads are reasonable: ~20% for neural network training
Timing information is abundant
Timing information is abundant

Other potential timing channel sources:
- Commands may be different sizes
- Application’s API use pattern may depend on secret data

Operations are distinguishable because of the hardware they use

GPU raises interrupt on kernel completion
Data-oblivious streams

Legend:
- Trusted
- Untrusted
- Data

Application
- `memcpy()`
- `launchKernel()`

LibTelekine
- `memcpy` queue
- GPU stream
- `launchKernel` queue

GPU API Proxy
- DMA
- MMIO

GPU TEE
Data-oblivious streams

- Divide commands by type so they can be scheduled independently
 - Adversary sees two independent streams of operations
 - Telekine manages data dependencies between types
- Split and pad commands as necessary; enforce a uniform size
- Queue commands and send them (or no-ops) out deterministically
 - E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms
Data-oblivious streams

• Divide commands by type so they can be scheduled independently
 - Adversary sees two independent streams of operations
 - Telekine manages data dependencies between types

• Split and pad commands as necessary; enforce a uniform size

• Queue commands and send them (or no-ops) out deterministically
 - E.g., launch 32 kernels every 15ms, memcpy 1MB both directions every 30ms
In the rest of the talk we will answer:

• Can information be extracted from GPU communication patterns?
 Yes, we demonstrate a communication timing attack

• How does Telekine remove that information?
 Replace GPU streams with new data-oblivious streams

• What are Telekine’s overheads?
 Overheads are reasonable: ~20% for neural network training
Testbeds

The cloud machine (Austin, Texas):
- Intel i9-9900K, 8 cores @3.60GHz
- 32GB of RAM
- Radeon RX VEGA 64 GPU with 8GB of RAM

Client (Austin, Texas):
- Intel Xeon E3-1270 v6, 4 cores @3.8GHz
- 32GB of RAM

Geo-distributed client (Dallas, Texas):
- Vultr cloud VM, 8 vCPUS
- 32GB of RAM

877Mbps, 12ms RTT

1Gbps, various RTTs

(RTT is “Roundtrip Time”)
We compare Telekine to an insecure baseline: running on the GPU server without protections

Workloads:

• Data movement vs. GPU work microbenchmark

• Neural net inference on MXNet:
 - ResNet50 [He et. al 2016], InceptionV3 [Szegedy et. al 2016], DenseNet [Huang et. al 2017]

• Neural net training on MXNet:
 - (Same networks as above)

• Graph analytics on Galois:
 - BFS, PageRank, SSSP (across 1 and 2 GPUs)
MXNet neural net inference (Real WAN)

- User sends a batch of images to be classified
- Baseline: user sends batch to remote MXNet
- Telekine: user sends batch to local MXNet
 - Telekine remotes computation to the GPU

<table>
<thead>
<tr>
<th>Batch Size</th>
<th>ResNet50</th>
<th>InceptionV3</th>
<th>DenseNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0X</td>
<td>6.6X</td>
<td>7.7X</td>
</tr>
<tr>
<td>8</td>
<td>3.4X</td>
<td>2.2X</td>
<td>2.5X</td>
</tr>
<tr>
<td>64</td>
<td>1.0X</td>
<td>1.1X</td>
<td>1.0X</td>
</tr>
</tbody>
</table>
MXNet neural net training *(Real WAN)*

- Large dataset of images, processed in batches of size 64

Overheads are low because GPUs overlap the extra work with computation:
- E.g., CUs can keep processing while the DMA engine performs transfers
 - Telekine connects that instance to the remote GPU
 - As a result Telekine uses a consistent 533 Mb/s network bandwidth

<table>
<thead>
<tr>
<th></th>
<th>ResNet50</th>
<th>InceptionV3</th>
<th>DenseNet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.23X</td>
<td>1.08X</td>
<td>1.22X</td>
</tr>
</tbody>
</table>
MXNet neural net training breakdown (Simulated WAN)

10ms RTT

(Real WAN)

<table>
<thead>
<tr>
<th></th>
<th>ResNet50</th>
<th>InceptionV3</th>
<th>DenseNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slowdown</td>
<td>1.23X</td>
<td>1.08X</td>
<td>1.22X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slowdown</th>
<th>ResNet50</th>
<th>InceptionV3</th>
<th>DenseNet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.10</td>
<td>1.06</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>1.15</td>
<td>1.07</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>1.19</td>
<td>1.10</td>
<td>1.22</td>
</tr>
</tbody>
</table>

- Baseline
- Add API Remoting
- Add Encryption
- Telekine
Telekine: Secure Computing with Cloud GPUs

• Eliminates communication timing channels with data-oblivioustream

• Transparent to applications because it maintains GPU API semantics

• Has modest performance overheads for level of security provided

Thanks!
Backup slides follow
MXNet training RTT sensitivity *(Simulated WAN)*

- RTT to cloud provider can vary
- The effect in performance depends on the workload

<table>
<thead>
<tr>
<th>RTT</th>
<th>ResNet50</th>
<th>InceptionV3</th>
<th>Densenet</th>
</tr>
</thead>
<tbody>
<tr>
<td>10ms</td>
<td>1.19X</td>
<td>1.10X</td>
<td>1.22X</td>
</tr>
<tr>
<td>20ms</td>
<td>1.29X</td>
<td>1.13X</td>
<td>1.37X</td>
</tr>
<tr>
<td>30ms</td>
<td>1.44X</td>
<td>1.16X</td>
<td>1.49X</td>
</tr>
<tr>
<td>40ms</td>
<td>1.53X</td>
<td>1.18X</td>
<td>1.66X</td>
</tr>
<tr>
<td>50ms</td>
<td>1.62X</td>
<td>1.30X</td>
<td>2.09X</td>
</tr>
</tbody>
</table>
Attack accuracy for batched inference

- GPU kernels operate on an entire batch
 - Cannot measure kernel execution time for individual images

- Task: correctly identify the class with the most images
 - Accuracy varies with how many more images there are (purity)
 - Batches of 32, four classes
 - Images selected from target class up to “Purity”
 - Batch filled out with images from other three classes

<table>
<thead>
<tr>
<th>Batch size</th>
<th>Purity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
<td>42%</td>
</tr>
<tr>
<td>32</td>
<td>25%</td>
<td>29%</td>
</tr>
<tr>
<td>32</td>
<td>80%</td>
<td>50%</td>
</tr>
<tr>
<td>32</td>
<td>100%</td>
<td>65%</td>
</tr>
</tbody>
</table>
Communication vs GPU work *(Simulated WAN)*

10ms RTT

- Copy 16MB to the GPU
- Compute for x-axis seconds
- Copy 16MB from the GPU

Graph: Telekine

Y-axis: Slowdown

X-axis: GPU Computation (in seconds, logscale)