
© 2020, Amazon Web Services, Inc. or its Affiliates. 

Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Diana-Maria Popa, and Phil Piwonka

February 2020

Lightweight Virtualization for Serverless 
Applications



© 2020, Amazon Web Services, Inc. or its Affiliates. 

• What is Firecracker?
• Why Firecracker?
• Performance
• Challenges for the Future 



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Firecracker is an open source VMM that is 
purpose-built for creating and managing 

secure, multi-tenant container and function-
based services.



© 2020, Amazon Web Services, Inc. or its Affiliates. Amazon Confidential 4

Firecracker



© 2020, Amazon Web Services, Inc. or its Affiliates. 

• Started with a branch of crosvm
• Removed >50% of the code

• 96% fewer lines of code than QEMU
• Simplified device model

• no BIOS, no PCI, etc



© 2020, Amazon Web Services, Inc. or its Affiliates. 

• Linux and OSv guests
• Integrated with container ecosystem

• Kata, FireKube, containerd
• Apache 2.0 license

• https://github.com/firecracker-microvm/
firecracker



© 2020, Amazon Web Services, Inc. or its Affiliates. 

• In production in AWS Lambda
• Millions of workloads
• Trillions of requests/month



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Why Firecracker?



© 2020, Amazon Web Services, Inc. or its Affiliates. 

EC2 m5.metal instance
384GB of RAM

Smallest Lambda 
Function

128MB of RAM



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Isolation:
It must be safe for multiple functions to run on the same hardware.



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Overhead & Density: 
Thousands of functions on a single machine. 



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Performance: 
Functions must perform similarly to running natively.



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Compatibility:
Arbitrary Linux binaries and libraries. No code changes or recompilation.



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Soft Allocation:
It must be possible to over commit CPU, memory and other resources.



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Firecracker ticks all these boxes

• QEMU/KVM: density and overhead challenges
• Linux containers: isolation and compatibility challenges
• LibOS approaches: compatibility challenges
• Language VM isolation: compatibility and isolation challenges



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Performance



© 2020, Amazon Web Services, Inc. or its Affiliates. 

MicroVM start latency (serial)



© 2020, Amazon Web Services, Inc. or its Affiliates. 

MicroVM start latency (50 parallel)



© 2020, Amazon Web Services, Inc. or its Affiliates. 

QD1 IO Latency vs Bare Metal



© 2020, Amazon Web Services, Inc. or its Affiliates. 

QD32 IO Throughput vs Bare Metal



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Operational Lessons



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Lesson #1: Compatibility is Hard

Just disabling Hyperthreading revealed two bugs in Apache Commons 
HTTP Client, and one in our own code.

Re-implementing OS components would have been worse.

Performance compatibility too!



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Lesson #2:
Immutable, Time-Limited Machines

Common systems-administration tools like rpm and dpkg are non-
deterministic.

Limiting max fleet life helps operational hygiene.



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Lesson #3:
The Job is Never Done

Changing customer needs means that there are always 
improvements to be made.



© 2020, Amazon Web Services, Inc. or its Affiliates. 

The Future



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Opportunities

IO performance and scalability (offload)
Scheduling, especially for tail latency
Formal correctness proofs

Features like snapshots, ballooning, etc.

rust-vmm, and the container community.



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Q&A 
Marc Brooker  
mbrooker@amazon.com  
@marcjbrooker


