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• What is Firecracker?
• Why Firecracker?
• Performance
• Challenges for the Future 
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Firecracker is an open source VMM that is 
purpose-built for creating and managing 

secure, multi-tenant container and function-
based services.
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Firecracker
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• Started with a branch of crosvm
• Removed >50% of the code

• 96% fewer lines of code than QEMU
• Simplified device model

• no BIOS, no PCI, etc
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• Linux and OSv guests
• Integrated with container ecosystem

• Kata, FireKube, containerd
• Apache 2.0 license

• https://github.com/firecracker-microvm/
firecracker
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• In production in AWS Lambda
• Millions of workloads
• Trillions of requests/month
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Why Firecracker?
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EC2 m5.metal instance
384GB of RAM

Smallest Lambda 
Function

128MB of RAM
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Isolation:
It must be safe for multiple functions to run on the same hardware.
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Overhead & Density: 
Thousands of functions on a single machine. 
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Performance: 
Functions must perform similarly to running natively.
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Compatibility:
Arbitrary Linux binaries and libraries. No code changes or recompilation.
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Soft Allocation:
It must be possible to over commit CPU, memory and other resources.
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Firecracker ticks all these boxes

• QEMU/KVM: density and overhead challenges
• Linux containers: isolation and compatibility challenges
• LibOS approaches: compatibility challenges
• Language VM isolation: compatibility and isolation challenges
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Performance
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MicroVM start latency (serial)
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MicroVM start latency (50 parallel)
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QD1 IO Latency vs Bare Metal
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QD32 IO Throughput vs Bare Metal
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Operational Lessons
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Lesson #1: Compatibility is Hard

Just disabling Hyperthreading revealed two bugs in Apache Commons 
HTTP Client, and one in our own code.

Re-implementing OS components would have been worse.

Performance compatibility too!



© 2020, Amazon Web Services, Inc. or its Affiliates. 

Lesson #2:
Immutable, Time-Limited Machines

Common systems-administration tools like rpm and dpkg are non-
deterministic.

Limiting max fleet life helps operational hygiene.
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Lesson #3:
The Job is Never Done

Changing customer needs means that there are always 
improvements to be made.
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The Future
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Opportunities

IO performance and scalability (offload)
Scheduling, especially for tail latency
Formal correctness proofs

Features like snapshots, ballooning, etc.

rust-vmm, and the container community.
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