Stardust
Divide and Conquer in the Data Center Network

Noa Zilberman
University of Cambridge

Golan Schzukin & Gabi Bracha
Broadcom

February 2019
Network switches

Switch silicon

Scale: 12.8Tbps, 32×400GE
Network switch systems

Scale: Petabit / second
Data center networks

Connecting 10K’s to 100K’s of servers
Do data center networks scale?
Do data center networks scale?

- Example: Building DC with 100K servers (2500 ToR switches)
 - Option 1 – Link bundle of 1 (L=1):
 - 6.4Tbps Fabric Switch, 256×25G
 - Requires 2 Tiers
 \#fabric-switches = 1172
 - Option 2 – Link bundle of 4 (L=4):
 - 6.4Tbps Fabric Switch, 64×100G
 - Requires 3 Tiers
 \#fabric-switches = 1954 (×1.66 more)

In a network of \(n \) tiers, scale is \(O(L^{-n}) \)

![Graph showing network scale](image-url)
Do data center networks scale?

Observation:
A link bundle of one enables an optimum build of the network (i.e., less tiers, less switches, …)
Designing new network devices

• A decade ago: “Can we implement this feature?”

• Today: “Is this feature worth implementing, given the design constraints?”
The resource wall

• Network silicon die > 7 Billion transistors (Tomahawk, 2014)

• Limited by:
 • Power density
 • Die size
 • Manufacturing feasibility
Data center network

edge

aggregate (tier 1)

spine (tier 2)

aggregate (tier 1)

edge

spine layer

aggregate layer

PKT
Switch system

I/O
Network I/F
Switching
Network I/F
I/O

Line card
Network I/F
Ingress Processing
Queueing
Switching
Network I/F
I/O

Fabric card
Network I/F
Switching
Network I/F
I/O

Fabric card
Network I/F
Switching
Network I/F
I/O

Fabric card
Network I/F
Switching
Network I/F
I/O

Line card
Network I/F
Egress Processing
Network I/F
I/O

© N. Zilberman, G. Bracha, G. Schzukin 2019
Why waste resources?
in n tier network

$$O(n \times (\text{Switching} + 2 \times \text{I/O} + 2 \times \text{NIF}) + n \times (\text{Ingress Processing} + \text{Egress Processing} + \text{Queueing}))$$
Why waste resources?

Observation:
Significant resources can be saved by simplifying the data center network.
The single-pipeline switch

12.8Tbps Switches!

Lets convert to packet rate requirements:
 5800 Mpps @ 256B (100GE→38.7Mpps)
 19200 Mpps @ 64B (100GE→150Mpps)

But clock rate is only ~1GHz....
The single-pipeline switch

Observation:
To support full line rate for all packet sizes, network devices need to process multiple packets each and every clock cycle.

The age of multi core has reached switching…
The switch pipeline

The common depiction:
The switch pipeline

Actual Implementation:
Throughput = clock frequency x bus width

PACKET 512B

Data path Width e.g. 256B

CLOCK CYCLE2

CLOCK CYCLE1

256B

256B
The switch pipeline

Actual Implementation:
Throughput \neq clock frequency x bus width

PACKET 257B

Data path Width e.g. 256B

1B

CLOCK CYCLE2

CLOCK CYCLE1

256B
The single-pipeline switch

12.8Tbps Switches!

Lets convert to packet rate requirements:

5800 Mpps @ 256B (100GE → 38.7Mpps)
19200 Mpps @ 64B (100GE → 150Mpps)

But clock rate is only ~1GHz….

But if we pack data optimally…
The single-pipeline switch

Observation:
To support full line rate for all packet sizes, network devices need to process multiple packets each and every clock cycle.

Observation:
For best switch utilization, use fixed-size data units (cells)

The age of multi core has reached networking…
Observations

• A link bundle of one enables an optimum build of the network (i.e. less tiers, less switches, …)

• Significant resources can be saved by simplifying the network fabric

• To support full line rate for all packet sizes, network devices need to process multiple packets each and every clock cycle.

• For best switch utilization, use fixed-size data units (cells)
Introducing Stardust
From switch-system to data-center scale
Introducing Stardust

• Complex edge, simple network fabric

• **Fabric Element** - Fabric device
 • A simple cell switch

• **Fabric Adapter** – Edge device
 • A packet switch
 • Quite similar to a ToR
 • Chops packets to cells

Full details in our paper
A Stardust based network

Spine Layer

Aggregate Layer

No Link Bundles
Dynamic cell routing

Input 1 → Output 1
Input 9 → Output 7
Input 8 → Output 2
Input 7 → Output 1

→ Non-Blocking
Reachability table

• Need to know only the destination Fabric Adapter
 • 1M virtual machines → 100K end hosts → 2500 Fabric Adapters

• Entries indicate “reachable through these links”
 • “You can get to Fabric Adapter 1 using links 1,5,8,14,36”
 • Bitmap of size “switch radix”

• Automatically constructed and updated
 • Using reachability messages
Buffering and scheduling

• Packet buffering at the edge
 • Using virtual output queues (VOQ) at the ingress Fabric Adapter

• A distributed scheduled fabric
 • A Fabric Adapter generates credits (e.g. 4KB) to all non-empty associated VOQ

432-node Fat-Tree (simulation)
Packet packing

![Diagram of Packet Packing]

- **CREDITSIZE**
 - CELL
 - CELL
 - CELL
 - CELL
 - CELL
 - CELL

- **PKT**
 - 1
 - 2
 - 3
 - 4
 - N
Packet packing

NetFPGA SUME

CREDIT SIZE

CELL CELL CELL CELL

PKT 1 PKT 2 PKT 3 PKT 4

PKT N

Bandwidth [Gbps]

Reference Switch
Switch - Cells
NDP Switch
Stardust - Packed Cells

Throughput [%]

DB Web Hadoop

Switch Cell Stardust
Properties

✓ Protocol and traffic pattern agnosticism
 Cell switching & packing, dynamic routing, fabric scheduling

✓ Improved resilience and self healing
 Reachability messages, link bundling, dynamic routing

✓ Less network tiers, better scalability
 Link bundling, reachability messages, dynamic routing

✓ Optimal load balancing
 Dynamic routing, cell switching & packing, fabric scheduling

✓ Lossless transmission
 Fabric scheduling, dynamic routing, cell switching, reachability messages

✓ Incast absorption
 Fabric scheduling, dynamic routing, cell switching, reachability messages

✓ Pull fabric and port fairness
 Fabric scheduling, dynamic routing, cell switching, link bundling
Power and cost – entire network

- Less network tiers → less devices
- Less power & area (cost) per device
 - Fabric Element saves 35% of power
 - Fabric Element saves 33.3% of silicon area
 - Save 87% of header processing area
 - Save 70% of network interface area
What about the future?

- Scalability of ToR / Fabric Adapter is the bottleneck
- Let us replace the ToR with a Fabric Element
- Let us turn the NIC into a Fabric Adapter
 - Lighter MAC
 - Smaller tables
 - Limited VOQs
 - Fabric adapters already support DMA
Stardust - summary

From switch-system to data center scale:
• Simple network fabric
• Push complexity to the edge

• Combines:
 • Cell switching and Packet packing
 • Load balancing
 • Scheduled fabric
 • Reduced network tiers

• Better performance
• Lower power, lower cost
Acknowledgements