
NetBouncer: Active Device and Link Failure
Localization in Data Center Networks

Cheng Tan1, Ze Jin2, Chuanxiong Guo3, Tianrong Zhang4,

Haitao Wu5, Karl Deng4, Dongming Bi4, and Dong Xiang4

1. NYU 2. Cornell 3. Bytedance 4. Microsoft 5. Google

Anna
Network operator

1

Anna
Network operator

Customers

Unstable network
High latency
Low throughput

2

Spine

Leaf

ToR

Servers

…

3

?✕

Spine

Leaf

ToR

Servers

…

4

?✕
……

x

Traditional monitoring system
queries switches (e.g., SNMP)

Spine

Leaf

ToR

Servers

…

OK

5

Spine

Leaf

ToR

Servers

…

OK

6

?✕

Spine

Leaf

ToR

Servers

…

OK

7

?✕

Spine

Leaf

ToR

Servers

…

OK

8

?✕

Spine

Leaf

ToR

Servers

…
??

?

??

? ? OK

9

?✕

Spine

Leaf

ToR

Servers

…
??

?

??

? ? OK

10

?✕
hours days

This is a true story

• Root cause
– A firmware bug on a switch link (bit flips of a fabric module)

– It silently drops packets without any signal

• Gray failure*
– Differential observability

– Cause major cloud breakdowns

– Localizing gray failures is essential for high availability

*Huang et al. Gray Failure: The Achilles’ Heel of Cloud-Scale Systems. HotOS’17

OK

11

Why yet another monitoring system?

• Our response to network gray failures is NetBouncer

• Indeed, many monitoring systems
– Academia: LossRadar, Trumpet, deTector, Netscope, …
– Industry: Pingmesh, NetNORAD, 007, Passive probing, …

• In production, there are four requirements:
1. Catch gray failures---from a server’s perspective

2. Transparent to current software stack
3. Pinpoint failures in links or devices

4. Few false positives (i.e., misreporting) and false negatives

12

NetBouncer overview

Spine

Leaf

ToR

Servers

…

NetBouncer is an active probing system which infers failures from path probing data.

Controller Processor
Network
topology

Link failure

Device failure

Path probing dataProbing plan

…

NetBouncer is an active probing system which infers failures from path probing data.NetBouncer is an active probing system which infers failures from path probing data.NetBouncer is an active probing system which infers failures from path probing data

13

Rest of the talk

…

…

How to achieve light-weight
and explicit probing?

1

Which paths should
be probed?

2 How to infer failures from
path probing data?

3

14

Rest of the talk

…

…

How to achieve light-weight
and explicit probing?

1

How to design an
eligible probing plan?

2 How to infer failures from
path probing data?

3

15

Active probing system requires explicit and efficient probing

• Server can choose which links to evaluate with explicit probing
• NetBouncer uses IP-in-IP to explicitly probe a path

– IP-in-IP forwarding is implemented in hardware.

16

…

Active probing system requires explicit and efficient probing

• Server can choose which links to evaluate with explicit probing
• NetBouncer uses IP-in-IP to explicitly probe a path

– IP-in-IP forwarding is implemented in hardware.

17

…

• A server asks a switch to “bounce back” probing packets
– Simple model and simple fault tolerance

…

…

Which paths should
be probed?

2

How to achieve light-weight
and explicit probing?

1

How to infer failures from
path probing data?

3

18

Observation vs. inference: from path probing to failures

…

19

Observation vs. inference: from path probing to failures

• Undirected graph (vertex=device, edge=link)
• Failures are probabilistic

……

49 / 100
49%

20

Observation vs. inference: from path probing to failures

• Undirected graph (vertex=device, edge=link)
• Failures are probabilistic

……

49 / 100
49%

observation

goal: is this link faulty?

21

Observation vs. inference: from path probing to failures

• Undirected graph (vertex=device, edge=link)
• Failures are probabilistic

……

49 / 100
49%

observation

goal: is this link faulty?

22

…

49 / 100

49%

possibility 1

49 / 100

49%

possibility 2

49 / 100

70%

70%

possibility 3

Observation vs. inference: from path probing to failures

……

49%

23

?

…

49 / 100

49%

possibility 1

49 / 100

49%

possibility 2

49 / 100

70%

70%

possibility 3

Observation vs. inference: from path probing to failures

• Infer the link success probabilities from path probing observations

• Report links as faulty with success probability < threshold (e.g., 99%)

……

49%

24

?100%

…

49 / 100

49%

possibility 1

49 / 100

49%

possibility 2

49 / 100

70%

70%

possibility 3

Observation vs. inference: from path probing to failures

• Infer the link success probabilities from path probing observations
• Report links as faulty with success probability < threshold

……

49%

25

49 / 100

51%

possibility 1

49 / 100

30%

30%

possibility 3

…

49 / 100

51%

possibility 2

?100%

Which paths should be probed, s.t.
all link success probabilities can be uniquely determined?

Real-world constraints complicate path selection

• Constraint 1: some switches may not bounce the probing
• Constraint 2: a probing path starts/ends at the same server

• Sometimes, it is impossible to uniquely identify all links

26

Real-world constraints complicate path selection

• Constraint 1: some switches may not bounce the probing
• Constraint 2: a probing path starts/ends at the same server

• Sometimes, it is impossible to uniquely identify all links

x1 x2

x3 x4

27

Real-world constraints complicate path selection

• Constraint 1: some switches may not bounce the probing
• Constraint 2: a probing path starts/ends at the same server

• Sometimes, it is impossible to uniquely identify all links

x1 x2

x3 x4

y1= x1× x3

28

Real-world constraints complicate path selection

• Constraint 1: some switches may not bounce the probing
• Constraint 2: a probing path starts/ends at the same server

• Sometimes, it is impossible to uniquely identify all links

x1 x2

x3 x4

y1= x1× x3

y2= x1× x4

y3= x2× x3

y4= x2× x4

y1 × y4 = y2× y3

29

Real-world constraints complicate path selection

• Constraint 1: some switches may not bounce the probing
• Constraint 2: a probing path starts/ends at the same server

• Sometimes, it is impossible to uniquely identify all links

x1 x2

x3 x4

y1= x1× x3

y2= x1× x4

y3= x2× x3

y4= x2× x4

y1 × y4 = y2× y3

log(y1) = log(x1)+log(x3)
log(y2) = log(x1)+log(x4)
log(y3) = log(x2)+log(x3)
log(y4) = log(x2)+log(x4)

Not full rank

30

Real-world constraints complicate path selection

• Constraint 1: some switches may not bounce the probing
• Constraint 2: a probing path starts/ends at the same server

• Sometimes, it is impossible to uniquely identify all links

x1 x2

x3 x4

y1= x1× x3

y2= x1× x4

y3= x2× x3

y4= x2× x4

y1 × y4 = y2× y3

log(y1) = log(x1)+log(x3)
log(y2) = log(x1)+log(x4)
log(y3) = log(x2)+log(x3)
log(y4) = log(x2)+log(x4)

Not full rank

Links success probabilities
(x1-x4) can be arbitrary

31

A condition to uniquely identify link success probabilities

We proved a theorem (for Clos network), that provides
• a simple probing plan: each server probes all top-layer switches
• a necessary and sufficient condition for uniquely identifying P(link)

32

A condition to uniquely identify link success probabilities

We proved a theorem (for Clos network), that provides
• a simple probing plan: each server probes all top-layer switches
• a necessary and sufficient condition for uniquely identifying P(link)

…

each node has at least one good path through it

Good path (no loss)

Lossy path

33

… …

Subgraph with unique solutionOriginal graph Unsolvable part

No good paths pass
this switch

34

Device failure detection

… …

Subgraph with unique solutionOriginal graph Unsolvable partFaulty devices

No good paths pass
this switch

35

Device failure detection

… …

Subgraph with unique solutionOriginal graph Unsolvable partFaulty devices

No good paths pass
this switch

How to infer the link failures
from this subgraph?

?

36

…

…

How to infer the link failures from
the solvable subgraph?

3

How to achieve light-weight
and explicit probing?

1

Which paths should
be probed?

2

37

Link failure inference: an optimization problem

Given the path probing data (yj), how to infer the link success
probabilities (xi) that fits them the best?

…

y1= 50/100 = x1 × x2 × x3

x1

x2

x3

38

Assume packet drops are
independent events.

Real-world data inconsistency induces false positives

50%

39

Real-world data inconsistency induces false positives

50%

50/100 50/100

40

Real-world data inconsistency induces false positives

False positive50%

50/100 50/100 49/100

41

98% (2% loss)

• Real-world data inconsistency
– Measurements do not fully align
– Inference results may overfit observations

Real-world data inconsistency induces false positives

False positive50%

50/100 50/100 49/100

42

98% (2% loss)

• Real-world data inconsistency
– Measurements do not fully align
– Inference results may overfit observations

• Solution: a specialized regularization

Real-world data inconsistency induces false positives

False positive

10 x
(a)

10 x
(b)

better

50%

50/100 50/100 49/100

43

98% (2% loss)

Evaluation questions

• In production, what failures have been detected by NetBouncer?
– One real case, more in paper

• How accurate is NetBouncer compared with previous algorithms?

• What’s the performance of NetBouncer’s algorithm?

44

• Observations
– Many customers experienced packet drops and latency increases
– Traditional monitoring systems cannot pinpoint the failure

• NetBouncer detected this gray failure
– One spine router silently dropped packets
– Root cause was an issue in one of this

switch’s linecard hardware

Real case: spine router gray failure

time

15%

13%

17%
Packet drop probability

45

Accuracy comparison with previous algorithms
• Simulation setup:

– 3-layer Clos network with 2.8K switches (48 ports), 27.6K servers and 82.9K links
– 1% faulty links and 10 faulty devices

• Compare with two algorithms: deTector and NetScope

1

10

100

1000

#false negative #false positive
7.2k 10.8k

0.4 0 0

Hit ratio=0.6 Hit ratio=0.9 ω=0.1 ω= 1 ω= 10

deTector NetScope

NetBouncer
(λ=1)

Cannot guarantee
zero-FP/FN; has FP/FN
in other experiments

Number
of FP/FN

better

46

NetBouncer algorithm performance

• Xeon E5 2.4GHz CPU with 128GB memory

• One hour trace from 2016 (~130GB)

47

Related work

• Network tomography
– Internet failure localization: NetScope, LIA, NetQuest
– Heuristic algorithm: Tomo, detector
– Require further investigation: Pingmesh, NetSonar, NetNorad

• Other troubleshooting systems
– Panorama , Deepview, 007
– Trumpet, LossRadar

• Explicit path probing
– XPath and other source routing

• Probing plan design
– Focus on minimizing number of paths

48

Conclusion

• A complete framework for data center network failure localization
– An efficient path probing scheme
– A necessary and sufficient condition for an eligible probing plan
– A link failure inference algorithm

• NetBouncer has been deployed for three years and performs well

49

