
Deepview:	
Virtual	Disk	Failure	Diagnosis	

and	Pattern	Detection	for	Azure
Qiao	Zhang1,	Guo Yu2,	Chuanxiong	Guo3,	

Yingnong Dang4,	Nick	Swanson4,	Xinsheng Yang4,	Randolph	Yao4,	
Murali Chintalapati4,	Arvind	Krishnamurthy1,	Tom	Anderson1

1University	of	Washington,	2Cornell	University,	3Toutiao	(Bytedance),	
4Microsoft



VM	Availability

• IaaS	is	one	of	the	largest	cloud	services	today

•High	VM	availability	is	a	key	performance	metric

• Yet,	achieving	99.999%	VM	uptime	remains	a	challenge

1. What	is	the	availability	bottleneck?
2. How	to	eliminate	it?



Clos Network

Azure	IaaS	Architecture
• Compute	and	storage	clusters	
with	a	Clos-like	network

• Compute-storage	Separation
• VMs	and	Virtual	Hard	Disks	
(VHDs)	from	different	clusters

• Hypervisor	transparently	
redirects	disk	access

• Data	survive	compute	rack	
failure	Storage Cluster

VM

Hypervisor

Host
VM

Compute Cluster

Subsystems	inside	a	Datacenter



A	New	Type	of	Failure:	VHD	Failures

• Infra	failures	can	disrupt	
VHD	access

•Hypervisor	can	retry,	but	
not	indefinitely

•Hypervisor	will	eventually	
crash	the	VM

• Customers	then	take	actions	
to	keep	their	app-level	SLAs

Clos Network

Storage Cluster

VM

Hypervisor

Host
VM

Compute Cluster

Subsystems	inside	a	Datacenter



How	much	do	VHD	failures	impact	VM	availability?

VHD	failures:
• 52% of	unplanned	VM	downtime
• Tens	of	minutes	to	hours	to	localizeVHD	

Failure
52%

SW	
Failure
41%

HW	Failure
6%

Unknown	1%

Breakdown	of	Unplanned	
VM	Downtime	in	a	Year

VHD	failure	localization	is	the	bottleneck



Failure	Triage	was	Slow	and	Inaccurate

• Each	team	checks	their	subsystem	for	anomalies	to	match	the	incident
• e.g.,	host	heart-beats,	storage	perf-counters,	link	discards

• Incidents	get	ping-ponged	due	to	false	positives
• Inaccurate	and	slow	diagnosis

• Gray	failures	in	network	and	storage	are	hard	to	catch
• Troubled	but	not	totally	down
• Only	fail	a	subset	of	VHD	requests
• Can	take	hours	to	localize



Deepview Approach:	Global	View

C1
C2
C3
C4

S1
S2
S3

Bipartite	Model

C1
C2

C3
C4

S1 S2 S3
Grid	View

• Isolate	failures	by	examining	interactions	between	subsystems
• Instead	of	alerting	every	team

• Bipartite	model
• Compute	Clusters	(left)	:	Storage	Clusters	(right)
• Edge	if	VMs	from	compute	cluster	mount	VHDs	from	a	storage	cluster
• Edge	weight	=	VHD	failure	rate



Deepview Approach:	Global	View

Azure	measurements	revealed	many	common	failures	patterns

C1
C2
C3
C4

S1

S2

S3

Compute	Cluster	
C2	failed

C2	Failure	
Grid	View

C1
C2
C3
C4

S1 S2 S3

Example	Compute	Cluster	Failure

C1
C2
C3
C4

S1

S2

S3

Storage	Cluster	
S1	Failed

Example	Storage	Cluster	Failure

S1	Gray	Failure
Grid	View

C1
C2
C3
C4

S1 S2 S3



Challenges
Remaining	challenges:
1. Need	to	locate	network	failures
2. Need	to	handle	gray	failures
3. Need	to	be	near-real-time

Generalized	model
Lasso	+	Hypothesis	testing

Streaming	data	pipeline

A	system	to	localize	VHD	failures	to	underlying	failures	in	compute,	
storage	or	network	subsystems	within	a	time	budget	of	15	minutes

Summary	of	our	goal:

Time	budget	set	by	production	team	to	meet	availability	goals



Outline

•Global	View	Approach
•Model	&	Algorithm
•System
•Evaluation
•Architectural	Lessons
•Related	Work



Deepview Model:	Include	the	Network

Clos Network

Storage ClusterCompute Cluster

•Need	to	handle	multipath	&	ECMP

• Simplify	Clos	network	to	a	tree	by	
aggregating	network	devices

• Can	model	at	the	granularity	of	
clusters	or	racks



Deepview Model:	Estimate	Component	Health

𝐏𝐫𝐨𝐛 𝐩𝐚𝐭𝐡	𝐢	𝐢𝐬	𝐡𝐞𝐚𝐥𝐭𝐡𝐲 = 0 𝐏𝐫𝐨𝐛 𝐜𝐨𝐦𝐩𝐨𝐧𝐞𝐧𝐭	𝐣	𝐢𝐬	𝐡𝐞𝐚𝐥𝐭𝐡𝐲
�

𝐣∈𝐩𝐚𝐭𝐡(𝐢)

𝟏 −
𝐞𝐢
𝐧𝐢
= 0 𝐩𝐣

�

𝐣∈𝐩𝐚𝐭𝐡(𝐢)

𝐥𝐨𝐠 𝟏 −
𝐞𝐢
𝐧𝐢

= < 𝐥𝐨𝐠	𝐩𝐣

�

𝐣∈𝐩𝐚𝐭𝐡(𝐢)

𝐲𝐢 =<𝛃𝐣 	𝐱𝐢𝐣+ 𝛆𝐢

𝐍

𝐣B𝟏

𝐲𝐢=𝐥𝐨𝐠 𝟏 − 𝐞𝐢
𝐧𝐢

𝛃𝐣=𝐥𝐨𝐠	𝐩𝐣
𝛆𝐢=measurement	noise

System	of	Linear	Equations

Blue:	observable
Red:	unknown
Purple:	topology

Component	j	is	healthy	with
𝐩𝐣 = 𝐞𝐱𝐩	(𝛃𝐣)
• βD = 0,	clear	component	j
• βD ≪ 0,	may	blame	it

Assume	independent	failures

𝐞𝐢=num of	VMs	crashed
𝒏𝐢=num of	VMs



Deepview Algorithm:
Prefer	Simpler	Explanation	via	Lasso

• Potentially,	#unknowns	>	#equations
• Traditional	least-square	regression	would	fail

Sparsity

𝛃H = 𝐚𝐫𝐠𝐦𝐢𝐧
𝛃∈ℝ𝐍,𝛃K𝟎

𝐲 − 𝐗𝛃 𝟐 +	𝛌	 𝛃 𝟏

Lasso	Objective	Function:

𝐲𝟏 = 𝛃𝐜𝟏 + 𝛃𝐧𝐞𝐭 + 𝛃𝐬𝟏 + 𝛆𝟏
𝐲𝟐 = 𝛃𝐜𝟏 + 𝛃𝐧𝐞𝐭 + 𝛃𝐬𝟐 + 𝛆𝟐
𝐲𝟑 = 𝛃𝐜𝟐 + 𝛃𝐧𝐞𝐭 + 𝛃𝐬𝟏 + 𝛆𝟑
𝐲𝟒 = 𝛃𝐜𝟐 + 𝛃𝐧𝐞𝐭 + 𝛃𝐬𝟐 + 𝛆𝟒

Net

C1 C2 S1 S2

𝐲𝐢 =<𝛃𝐣 	𝐱𝐢𝐣+ 𝛆𝐢

𝐍

𝐣B𝟏

Example:

• But	multiple	simultaneous	failures	are	rare
• Encode	this	domain	knowledge	mathematically?

• Equivalent	to	prefer	most	βD to	be	zero	
• Lasso	regression can	get	sparse	solutions	efficiently



Deepview Algorithm:
Principled	Blame	Decision	via	Hypothesis	Testing

• Need	a	binary	decision	(flag/clear)	for	each	component
• Ad-hoc	thresholds	do	not	work	reliably
• Can	we	make	a	principled	decision?

• If	estimated	failure	probability	worse	than	average,	then	
likely	a	real	failure

• Hypothesis	test:
• If	reject	HS j ,	blame	component	j;	otherwise,	clear	it	

𝐇𝟎 𝐣 : 𝛃𝐣 = 𝛃W				𝐯𝐬. 			𝐇𝐀 𝐣 : 𝛃𝐣 < 𝛃W



Kusto Engine

Deepview System	Architecture:	NRT	Data	Pipeline

VHD Failure

VM Info

StorageAcct

Net Topo

VMsPerPath Input

Real-time

Non-RT

Ingestion
Pipeline

RAW DATA SLIDING WINDOW OF INPUT

Output

ACTIONS

Alerts

Vis

Near-realtime
Scheduler

RUN ALGO

Algo



Outline

•Global	View	Approach
•Model	&	Algorithm
•System
•Evaluation
•Architectural	Lessons
•Related	Work



Evaluation

Deepview has	been	deployed	in	production	at	Azure

1. How	well	can	it	localize	VHD	failures	in	production?

2. How	accurate	is	the	algorithm	compared	to	alternatives?

3. How	fast	is	the	system?



Some	Statistics

• Analyzed	Deepview results	for	one	month
• Daily	VHD	failures:	hundreds	to	tens	of	thousands

• Detected	100	failures	instances
• 70	matched	with	existing	tickets,	30	were	previously	undetected

• Reduced	unclassified	VHD	failures	to	less	than	a	max	of	500	per	day
• Host	failures	or	customer	mistakes	(e.g.,	expired	storage	accounts)



Case	Study	1:	Unplanned	ToR Reboot

• Unplanned	ToR reboot	can	cause	VM	crashes
• Know	this	can	happen,	but	not	where	and	when

• Deepview can	flag	those	ToRs

• Associate	VM	downtime	with	ToR failures
• Quantify	the	impact	of	ToR as	a	single-point-of-
failure	on	VM	availability

ToR_11

ToR_12

ToR_13

ToR_14

ToR_15

ST
R

_0
1

ST
R

_0
2

ST
R

_0
3

ST
R

_0
4

ST
R

_0
5

ST
R

_0
6

ST
R

_0
7

Blamed	the	right	
ToR among	288	
components



Case	Study	2:	Storage	Cluster	Gray	Failure

• A	storage	cluster	was	
brought	online	with	a	bug	
that	puts	some	VHDs	in	
negative	cache

•Deepview flagged	the	faulty	
storage	cluster	almost	
immediately	while	manual	
triage	took	20+	hours

10

20

0 20 40 60

Hour

N
u

m
b

e
r 

o
f 

V
M

s 
w

ith
 

 V
H

D
 F

a
ilu

re
s 

p
e

r 
H

o
u

r

Number	of	VMs	with	VHD	
Failures	per	Hour	during	a	
Storage	Cluster	Gray	Failure



Case	Study	3:	Network	Failure

• Network	outages	are	rare,	but	do	happen

• In	an	incident,	many	top	tier	links	were	
mistakenly	turned	off,	causing	large	capacity	loss

• When	storage	replication	traffic	hit,	it	caused	
huge	packet	losses	and	many	VMs	to	crash

• Deepview pinpointed	the	misbehaving	
aggregate	switches

A	Network	Failure	
due	to	Top	Tier	Link	

Capacity	Loss

C
om

pu
te

 C
lu

st
er

s

Storage Clusters



0.6

0.3

0.9
0.67

0.88
1

0
0.25
0.5

0.75
1

Boolean	Tomo SCORE Deepview

Precision Recall

Algorithm	Accuracy	Comparison

• Two	other	tomography	algorithms:	Boolean-Tomo and	SCORE	
• Greedy	heuristics	to	find	minimum	set	of	failures	

• Use	production	trace	from	42	incidents
• 16	Compute,	14	Storage,	10	ToR,	2	Net



Deepview Time	to	Detection
• Time	to	detection	(TTD)	

• Time	from	incident	start	to	failure	localized
• Estimate	start	time	from	VHD	failure	event	timestamp

• Deepview’s TTD	is	under	10	min	
• Data	ingestion	takes	~3.5	min
• ~5	minutes	sliding	window	delay
• Worst-case	18	sec	algorithm	running	time

• Meets	the	target	TTD	of	15	min
• Can	be	made	faster	but	mitigation	time	is	on	human	time	scale



Outline

•Global	View	Approach
•Model	&	Algorithm
•System
•Evaluation
•Architectural	Lessons
•Related	Work



ToR as	a	Single	Point	of	Failure
• Reduced	Network	Cost	vs.	Availability	cost	for	using	a	single	ToR per	rack
• Soft	failures	(recoverable	by	reboot)	vs.	hard	failures

ToR Availability

= 𝟏 −
𝟗𝟎%	 ∗ 𝟐𝟎	𝐦𝐢𝐧 + 𝟏𝟎%	 ∗ 𝟏𝟐𝟎	𝐦𝐢𝐧 ∗ 𝟎. 𝟏%

𝟑𝟎	 ∗ 𝟐𝟒	 ∗ 𝟔𝟎	𝐦𝐢𝐧

= 𝟏 −
%	𝐬𝐨𝐟𝐭 ∗ 𝐬𝐨𝐟𝐭	𝐝𝐮𝐫.+%	𝐡𝐚𝐫𝐝 ∗ 𝐡𝐚𝐫𝐝	𝐝𝐮𝐫. ∗ 𝐟𝐫𝐚𝐜. 𝐫𝐞𝐛𝐨𝐨𝐭𝐞𝐝	𝐓𝐨𝐑𝐬	𝐩𝐞𝐫	𝐦𝐨𝐧𝐭𝐡

𝐭𝐨𝐭𝐚𝐥	𝐭𝐢𝐦𝐞	𝐢𝐧	𝐚	𝐦𝐨𝐧𝐭𝐡

= 𝟗𝟗. 𝟗𝟗𝟗𝟗𝟑%
• Dependent	services	(ToRs)	need	to	provide	one	extra	nine	to	target	service	(VMs)	

ToRs not	on	critical	path	for	VMs	to	achieve	five-nines	availability



VMs	and	their	Storage	Co-location
• For	load	balancing,	VMs	can	mount	VHDs	from	any	storage	cluster	in	
the	same	region

• Some	VMs	have	storage	that	are	further	away
• Can	longer	network	paths	impact	VM	availability?	And	by	how	much?

Longer	network	path	do	lead	to	higher	(11.4%)	VHD	failure	rate

• At	Azure,	52%	two-hop,	41%	four-hop
• Compute	daily	VHD	failure	rates:	rS (two-hop),	rf (four-hop)
• Average	over	3-months, rS and	rf
• rf − rS rS⁄ = 11.4%	increase



Related	Work
• NetPoirot [SIGCOMM	'16]

• A	single-node	solution	to	failure	localization	using	TCP	statistics
• Complementary	if	TCP	statistics	from	customer	VMs	are	available

• Binary	Tomography
• Deepview achieves	higher	precision/recall	than	those	greedy	heuristics

• (Approximate)	Bayesian	Network
• Too	slow	for	our	problem
• Future	work	to	compare	accuracy	experimentally



Conclusion

• Identified	VHD	failures	as	the	availability	bottleneck	at	Azure

• Deepview reduced	unclassified	daily	VHD	failures	from	10,000s	to	100s

• Revealed	new	failures,	e.g.,	unplanned	ToR reboots,	storage	gray	failures

• Quantified	the	impact	of	several	architectural	decisions	on	VM	availability

Thank	you!	Questions?


