Deepview: Virtual Disk Failure Diagnosis and Pattern Detection for Azure

Qiao Zhang¹, Guo Yu², Chuanxiong Guo³,

Yingnong Dang⁴, Nick Swanson⁴, Xinsheng Yang⁴, Randolph Yao⁴, Murali Chintalapati⁴, Arvind Krishnamurthy¹, Tom Anderson¹

¹University of Washington, ²Cornell University, ³Toutiao (Bytedance), ⁴Microsoft

VM Availability

IaaS is one of the largest cloud services today

• High VM availability is a key performance metric

• Yet, achieving 99.999% VM uptime remains a challenge

What is the availability bottleneck?
 How to eliminate it?

Azure laaS Architecture

• Compute and storage clusters with a Clos-like network

Compute-storage Separation

- VMs and Virtual Hard Disks (VHDs) from different clusters
- Hypervisor transparently redirects disk access

```
    Data survive compute rack 
failure
```

Subsystems inside a Datacenter

A New Type of Failure: VHD Failures

- Infra failures can disrupt
 VHD access
- Hypervisor can retry, but not indefinitely
- Hypervisor will eventually crash the VM
- Customers then take actions to keep their app-level SLAs

Subsystems inside a Datacenter

How much do VHD failures impact VM availability?

Breakdown of Unplanned VM Downtime in a Year

Failure Triage was Slow and Inaccurate

- Each team checks their subsystem for anomalies to match the incident
 e.g., host heart-beats, storage perf-counters, link discards
- Incidents get ping-ponged due to false positives
 - Inaccurate and slow diagnosis
- Gray failures in network and storage are hard to catch
 - Troubled but not totally down
 - Only fail a subset of VHD requests
 - Can take hours to localize

Deepview Approach: Global View

- Isolate failures by examining interactions between subsystems
 - Instead of alerting every team
- Bipartite model
 - Compute Clusters (left) : Storage Clusters (right)
 - Edge if VMs from compute cluster mount VHDs from a storage cluster
 - Edge weight = VHD failure rate

Bipartite Model

Deepview Approach: Global View

Example Compute Cluster Failure

Example Storage Cluster Failure

Azure measurements revealed many common failures patterns

Challenges

Remaining challenges:

- 1. Need to locate network failures
- 2. Need to handle gray failures
- 3. Need to be near-real-time

Summary of our goal:

A system to localize VHD failures to underlying failures in compute, storage or network subsystems within a time budget of 15 minutes

Generalized model

Lasso + Hypothesis testing

Streaming data pipeline

Time budget set by production team to meet availability goals

Outline

- Global View Approach
- Model & Algorithm
- System
- Evaluation
- Architectural Lessons
- Related Work

Deepview Model: Include the Network

• Need to handle multipath & ECMP

• Simplify Clos network to a tree by aggregating network devices

• Can model at the granularity of clusters or racks

Deepview Model: Estimate Component Health

Prob(path i is healthy) = Prob(component j is healthy) j∈path(i) Assume independent failures **Blue: observable Red: unknown p**_j e_i=num of VMs crashed **Purple: topology** i∈path(i) **n**_i=num of VMs $\log\left(1-\frac{e_i}{n_i}\right) = \sum \log p_j$ System of Linear Equations j∈path(i) Component j is healthy with $y_i = log\left(1 - \frac{e_i}{n_i}\right)$ $\mathbf{p}_{\mathbf{i}} = \exp(\mathbf{\beta}_{\mathbf{i}})$ $\beta_j x_{ij} + \epsilon_i$ $\mathbf{y}_{i} = \mathbf{y}_{i}$ $\beta_i = \log p_i$ • $\beta_j = 0$, clear component j • $\beta_i \ll 0$, may blame it ε_i=measurement noise

Deepview Algorithm: Prefer Simpler Explanation via Lasso

$$\mathbf{y}_{i} = \sum_{j=1}^{N} \boldsymbol{\beta}_{j} \mathbf{x}_{ij} + \boldsymbol{\varepsilon}_{i}$$

- Potentially, #unknowns > #equations
- Traditional least-square regression would fail
- But multiple simultaneous failures are rare
- Encode this domain knowledge mathematically?
- Equivalent to prefer most β_i to be zero
- Lasso regression can get sparse solutions efficiently

Deepview Algorithm: Principled Blame Decision via Hypothesis Testing

- Need a binary decision (flag/clear) for each component
- Ad-hoc thresholds do not work reliably
- Can we make a principled decision?
- If estimated failure probability worse than average, then likely a real failure
- Hypothesis test: $H_0(j): \beta_j = \overline{\beta}$ vs. $H_A(j): \beta_j < \overline{\beta}$
- If reject $H_0(j)$, blame component j; otherwise, clear it

Deepview System Architecture: NRT Data Pipeline

Outline

- Global View Approach
- Model & Algorithm
- System
- Evaluation
- Architectural Lessons
- Related Work

Deepview has been deployed in production at Azure

1. How well can it localize VHD failures in production?

2. How accurate is the algorithm compared to alternatives?

3. How fast is the system?

Some Statistics

- Analyzed Deepview results for one month
 - Daily VHD failures: hundreds to tens of thousands
- Detected 100 failures instances
 - 70 matched with existing tickets, 30 were previously undetected
- Reduced unclassified VHD failures to less than a max of 500 per day
 - Host failures or customer mistakes (e.g., expired storage accounts)

Case Study 1: Unplanned ToR Reboot

- Unplanned ToR reboot can cause VM crashes To
- Know this can happen, but not where and when ToR_{12}
- Deepview can flag those ToRs
- Associate VM downtime with ToR failures
- Quantify the impact of ToR as a single-point-offailure on VM availability

ToR among 288

components

Case Study 2: Storage Cluster Gray Failure

 A storage cluster was brought online with a bug that puts some VHDs in negative cache

 Deepview flagged the faulty storage cluster almost immediately while manual triage took 20+ hours

Number of VMs with VHD Failures per Hour during a Storage Cluster Gray Failure

Case Study 3: Network Failure

• Network outages are rare, but do happen

- In an incident, many top tier links were mistakenly turned off, causing large capacity loss
- When storage replication traffic hit, it caused huge packet losses and many VMs to crash
- Deepview pinpointed the misbehaving aggregate switches

A Network Failure due to Top Tier Link Capacity Loss

Algorithm Accuracy Comparison

- Two other tomography algorithms: **Boolean-Tomo** and **SCORE**
 - Greedy heuristics to find minimum set of failures
- Use production trace from 42 incidents
 - 16 Compute, 14 Storage, 10 ToR, 2 Net

Deepview Time to Detection

- Time to detection (TTD)
 - Time from incident start to failure localized
 - Estimate start time from VHD failure event timestamp
- Deepview's TTD is under 10 min
 - Data ingestion takes ~3.5 min
 - ~5 minutes sliding window delay
 - Worst-case 18 sec algorithm running time
- Meets the target TTD of 15 min
 - Can be made faster but mitigation time is on human time scale

Outline

- Global View Approach
- Model & Algorithm
- System
- Evaluation
- Architectural Lessons
- Related Work

ToR as a Single Point of Failure

- Reduced Network Cost vs. Availability cost for using a single ToR per rack
- Soft failures (recoverable by reboot) vs. hard failures

ToR Availability

 $= 1 - \frac{(\% \text{ soft} * \text{ soft dur.} + \% \text{ hard } * \text{ hard dur.}) * \text{ frac. rebooted ToRs per month}}{\text{ total time in a month}}$ $= 1 - \frac{(90\% * 20 \min + 10\% * 120 \min) * 0.1\%}{30 * 24 * 60 \min}$ = 99.99993%

• Dependent services (ToRs) need to provide one extra nine to target service (VMs)

ToRs not on critical path for VMs to achieve five-nines availability

VMs and their Storage Co-location

- For load balancing, VMs can mount VHDs from any storage cluster in the same region
- Some VMs have storage that are further away
- Can longer network paths impact VM availability? And by how much?
- At Azure, 52% two-hop, 41% four-hop
- Compute daily VHD failure rates: r_0 (two-hop), r_1 (four-hop)
- Average over 3-months, $\overline{r_0}$ and $\overline{r_1}$
- $(\overline{r_1} \overline{r_0})/\overline{r_0} = 11.4\%$ increase Longer network path do lead to higher (11.4%) VHD failure rate

Related Work

• NetPoirot [SIGCOMM '16]

- A single-node solution to failure localization using TCP statistics
- Complementary if TCP statistics from customer VMs are available

• Binary Tomography

• Deepview achieves higher precision/recall than those greedy heuristics

• (Approximate) Bayesian Network

- Too slow for our problem
- Future work to compare accuracy experimentally

- Identified VHD failures as the availability bottleneck at Azure
- Deepview reduced unclassified daily VHD failures from 10,000s to 100s
- Revealed new failures, e.g., unplanned ToR reboots, storage gray failures
- Quantified the impact of several architectural decisions on VM availability

Thank you! Questions?