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Network Function Virtualization (NFV)
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• Easier to manage/deploy, higher flexibility, higher scalability, easier to validate, etc.

• Network Functions: nodes on the data path between a source host and a destination host 
• Firewall, NIDS, IPS, Gateway, VPNs, Load Balancers, etc. 

• NFV is a network architecture concept: hardware => software 
• Based on virtualization techniques

• Construct service chains to provide specific services to meet different demands 



GPUs in Accelerating Network Functions

• GPUs are proven to be a good candidate for  
accelerating network functions 

• Router - PacketShader [Sigcomm’10] 
• SSL reverse proxy - SSLShader [NSDI’11] 
• NIDS - Kargus [CCS’12], MIDeA [CCS’11] 
• NDN Router - [NSDI’13]
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2. Massively Hiding Memory Access Latency 
• Network functions — large number of memory accesses in processing packets

• GPUs can effectively hide memory access latency with massive hardware threads and zero-overhead 

thread scheduling (a GPU hardware support)

1. Massive Processing Units 
• Network functions — large number of packets

• GPU — thousands of cores for parallel processing

Nvidia Titan X: 3840 Cores

550 GB/s memory bandwidth


price: $1999

Intel Xeon E5-2697 v4: 18 Cores

76.8 GB/s memory bandwidth


price: $2702



GPU-Accelerated Network Functions
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GPU

Aho-Corasick  
algorithm 

• Current GPU-based NFs - Exclusive Access to GPU 
• The GPU is only accessed by one network function

NIDS

Virtualization

Why GPUs Have not Been Utilized in NFV Systems?



Bit vector  
linear search 

Aho-Corasick  
algorithm 

AES and SHA1 DIR-24-8-BASIC 

• Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

Firewall NIDS IPsec Router

GPU

Virtualization

Why GPUs Have not Been Utilized in NFV Systems?

Inefficient



GPU capability: 
70 Mpps

Input:  
20 Mpps

Aho-Corasick  
algorithm 

Firewall NIDS IPsec Router

GPUIdle

Virtualization

• GPU underutilization

Current Way of GPU Virtualization is Inefficient

• Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time
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Current Way of GPU Virtualization is Inefficient

• Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

• GPU underutilization
• Higher latency

A



Spatial GPU Sharing

• Spatial GPU sharing — multiple kernels run on the GPU simultaneously 
• Minimize the interference of kernel executions from other NFs (Latency) 

• Enhance utilization - Kernels from VMs can run on the GPU simultaneously (Throughput)

(3) Spatial sharing
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GPU

Firewall NIDS IPsec Router

Hyper-Q for Spatial GPU Sharing

• Hyper-Q for spatial GPU sharing 
• A technique that enables GPU kernels from the same GPU context to execute on the GPU 

simultaneously

• Challenges 
1. VMs have different GPU context   =>   Cannot utilize Hyper-Q directly 

2. Kernels utilizing Hyper-Q can access the entire memory space   =>    Security issue 

3. NFs are not aware of the existence of other NFs; An NF tries to maximize its resources would 
influence other NFs   =>   Demanding scheduling and resource allocation schemes

Hyper-Q

Virtualization



The Goal of G-NET

Network Function Virtualization

Flexibility
Easy to manage 

/deploy Scalability

AgilityEasy validation

Development

Security

Scheduling

Resource Allocation

Spatial GPU Sharing

GPU

G-NET: NF-Hypervisor Co-Design



G-NET: GPU Virtualization

GPU

Manager
Common Context

Hypervisor

A proxy creates a  
common context  
in the hypervisor for  
spatial GPU sharing

Use API remoting to  
launch GPU operations

Receive requests 
Perform GPU ops 
Send response
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Framework Framework
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G-NET: System Workflow
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Zero-copy principle  
applied in system implementation



Achieve Predictable Performance
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• How to allocate GPU resources？ 
• GPUs utilize fast thread switching to enhance hardware utilization 

• GPUs have massive hardware threads (#thread >> #core) 

• Unlike CPUs, a GPU thread is unable to be bond to a specific core

How to guarantee the 
performance of a service chain?

Firewall NIDS IPsec Router

Virtualization

GPU

?

How to control the 
performance of an NF?



Achieve Predictable Performance

Thread block

• Our Approach 
• Streaming Multiprocessor (SM) as the basic 

unit for resource allocation 
• One thread block can only run on one SM; 

A thread block would be scheduled to run on 
an idle SM when there are available ones 

• A thread block is allocated with one SM when 
Total #thread blocks  <=  Total #SMs

Core SM

GPU Kernel 
Performance

Quantity of  
Work

Compute  
Resource ?

How to guarantee the 
performance of a service chain?

Latency

Throughput
NF 

Perf.
Firewall NIDS IPsec Router

Virtualization

GPU

Batch Size
How to control the 

performance of an NF?



Service Chain Based Scheduling

• Service chain based scheduling and resource allocation 
• Locate the bottleneck NF (the NF with the lowest throughput T) 
• Allocate resources for all NFs in the service chain to achieve throughput T * (1+P)    (0<P<1)

Firewall NIDS IPsec Router

Firewall NIDS IPsec Router

• How to optimize the performance of a service chain with limited compute resources 
• NFs have different processing tasks

5#SM 5 5 5
6Throughput (Mpps) 3 4 10

3
Fairness

SMs

Throughput improves 
by P in each round
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NF1 NFn
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IsoPointer for GPU Memory Isolation

GPU

Manager

Common Context

Switch

NIC

Scheduler

IsoPointer: 
guarantee GPU 
memory isolationMa

*Pa

Mb

*Pb

*P —> Memory Region
• Base Address (B) 
• Memory Size (S)

Pointer access checking: 
B  <=  P  <  B+S



NF Development
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• Framework handles all 
common operations 

… …

• Repetitive development efforts 
• CPU-GPU pipeline 
• Manage CPU threads 
• Communicate with Manager 
• Packet I/O with Switch 
• … …



NF Development
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• Framework handles all 
common operations 

• Abstraction to simplify NF 
development 

… …

• Repetitive development efforts 
• CPU-GPU pipeline 
• Manage CPU threads 
• Communicate with Manager 
• Packet I/O with Switch 
• … …



NF Development

NF1

Framework
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• pre_pkt_handler • post_pkt_handler
• memcpy_htod
• set_kernel_args
• memcpy_dtoh

+ GPU 
Kernel

Core functions

CPU code (Router)

Implementation  = 
Significantly reduces 
development efforts

called for each pktcalled for each kernelcalled for each pkt



Evaluation

• Hardware

CPU:  
Intel Xeon  

E5-2650 v4 


GPU:  
NVIDIA GTX 

TITAN X


NIC: 
Intel XL710 

40Gbps


• Software 
• Virtualization: Docker 17.03.0-ce 
• NIC Driver & Library: DPDK 17.02.1  
• OS: CentOS 7.3.1611, Linux kernel 3.8.0-30

• Service Chains 
• 2 NFs: 

• 3 NFs:  

• 4 NFs:

NIDSIPsec

Firewall NIDSIPsec

NIDSIPsec Router

Firewall NIDSIPsec Router

{



Throughput

• Comparison with Temporal GPU Sharing
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Scheduling

• Service chain scheduling scheme comparison 
• G-NET: optimize the performance of the service chain 
• FairShare: Evenly partition compute resources among NFs 
• UncoShare: Each NF tries to maximize its resource allocation
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10.7% average improvement over FairShare 
80.5% average improvement over UncoShare



Latency
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Conclusion

• G-NET:  
• An NFV system that efficiently utilizes GPUs with spatial GPU sharing 
• Service chain based scheduling and resource allocation scheme 
• Memory isolation with IsoPointer 
• Abstraction that simplifies building GPU-accelerated NFs 

• Experimental Results （Compare with temporal GPU sharing） 
• Enhances throughput by up to 70.8% 
• Reduces latency by up to 44.3%

G-NET 
High-efficient platform for building GPU-based NFV systems


