
G-NET: Effective GPU Sharing In NFV Systems

Kai Zhang*, Bingsheng He^, Jiayu Hu#, Zeke Wang^,  
Bei Hua#, Jiayi Meng#, Lishan Yang#

*Fudan University

^National University of Singapore

#University of Science and Technology of China

Network Function Virtualization (NFV)

VirtualizationVirtualization

IPsec Router

Virtualization

IPS LB

Firewall NIDS

• Easier to manage/deploy, higher flexibility, higher scalability, easier to validate, etc.

• Network Functions: nodes on the data path between a source host and a destination host
• Firewall, NIDS, IPS, Gateway, VPNs, Load Balancers, etc. 

• NFV is a network architecture concept: hardware => software
• Based on virtualization techniques

• Construct service chains to provide specific services to meet different demands

GPUs in Accelerating Network Functions

• GPUs are proven to be a good candidate for  
accelerating network functions

• Router - PacketShader [Sigcomm’10]
• SSL reverse proxy - SSLShader [NSDI’11]
• NIDS - Kargus [CCS’12], MIDeA [CCS’11]
• NDN Router - [NSDI’13]

Virtualization

IPsec Router

CPU GPU

2. Massively Hiding Memory Access Latency
• Network functions — large number of memory accesses in processing packets

• GPUs can effectively hide memory access latency with massive hardware threads and zero-overhead

thread scheduling (a GPU hardware support)

1. Massive Processing Units
• Network functions — large number of packets

• GPU — thousands of cores for parallel processing

Nvidia Titan X: 3840 Cores

550 GB/s memory bandwidth

price: $1999

Intel Xeon E5-2697 v4: 18 Cores

76.8 GB/s memory bandwidth

price: $2702

GPU-Accelerated Network Functions

RX TXGPU
Processing

GPU

Pre-
Processing

Post-
Processing

Post-
Processing

GPU-Accelerated Network Functions

Pre-
Processing

Parallel Processing
 in GPUs

�5

RX

Compute/memory- 
intensive tasks

TX Construct/filter 
packet, etc.

Packet parsing,

batching, etc.

GPU

Aho-Corasick  
algorithm

• Current GPU-based NFs - Exclusive Access to GPU
• The GPU is only accessed by one network function

NIDS

Virtualization

Why GPUs Have not Been Utilized in NFV Systems?

Bit vector  
linear search

Aho-Corasick  
algorithm

AES and SHA1 DIR-24-8-BASIC

• Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

Firewall NIDS IPsec Router

GPU

Virtualization

Why GPUs Have not Been Utilized in NFV Systems?

Inefficient

GPU capability: 
70 Mpps

Input:  
20 Mpps

Aho-Corasick  
algorithm

Firewall NIDS IPsec Router

GPUIdle

Virtualization

• GPU underutilization

Current Way of GPU Virtualization is Inefficient

• Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

A B C A(2) Temporal sharing
GPU Timeline

Kernel

AA A A AA
GPU Timeline

(1) Exclusive access KernelA

Current Way of GPU Virtualization is Inefficient

• Temporal GPU Sharing - Only kernels from one VM can run on the GPU at a time

• GPU underutilization
• Higher latency

A

Spatial GPU Sharing

• Spatial GPU sharing — multiple kernels run on the GPU simultaneously
• Minimize the interference of kernel executions from other NFs (Latency)

• Enhance utilization - Kernels from VMs can run on the GPU simultaneously (Throughput)

(3) Spatial sharing

GPU Timeline

A
B

C

A A A
B B B B B

C C C
Kernel

AA A A AA
GPU Timeline

(1) Exclusive access Kernel

A B C A(2) Temporal sharing
GPU Timeline

Kernel

GPU

Firewall NIDS IPsec Router

Hyper-Q for Spatial GPU Sharing

• Hyper-Q for spatial GPU sharing
• A technique that enables GPU kernels from the same GPU context to execute on the GPU

simultaneously

• Challenges
1. VMs have different GPU context => Cannot utilize Hyper-Q directly

2. Kernels utilizing Hyper-Q can access the entire memory space => Security issue

3. NFs are not aware of the existence of other NFs; An NF tries to maximize its resources would
influence other NFs => Demanding scheduling and resource allocation schemes

Hyper-Q

Virtualization

The Goal of G-NET

Network Function Virtualization

Flexibility
Easy to manage 

/deploy Scalability

AgilityEasy validation

Development

Security

Scheduling

Resource Allocation

Spatial GPU Sharing

GPU

G-NET: NF-Hypervisor Co-Design

G-NET: GPU Virtualization

GPU

Manager
Common Context

Hypervisor

A proxy creates a  
common context  
in the hypervisor for  
spatial GPU sharing

Use API remoting to  
launch GPU operations

Receive requests
Perform GPU ops
Send response

NF1 NFn

Framework Framework
… …

VMs

G-NET: System Workflow

GPU

Manager
Common Context

Hypervisor

Switch

NF1

Framework

NFn

Framework
… …

NIC

VMs

Shared Memory

Req.

Resp.

Zero-copy principle  
applied in system implementation

Achieve Predictable Performance

Latency

Throughput
GPU Kernel

Performance

Quantity of
Work

Compute
Resource

NF 
Perf.

Batch Size

• How to allocate GPU resources？
• GPUs utilize fast thread switching to enhance hardware utilization

• GPUs have massive hardware threads (#thread >> #core)

• Unlike CPUs, a GPU thread is unable to be bond to a specific core

How to guarantee the 
performance of a service chain?

Firewall NIDS IPsec Router

Virtualization

GPU

?

How to control the
performance of an NF?

Achieve Predictable Performance

Thread block

• Our Approach
• Streaming Multiprocessor (SM) as the basic

unit for resource allocation
• One thread block can only run on one SM; 

A thread block would be scheduled to run on
an idle SM when there are available ones

• A thread block is allocated with one SM when 
Total #thread blocks <= Total #SMs

Core SM

GPU Kernel
Performance

Quantity of
Work

Compute
Resource ?

How to guarantee the 
performance of a service chain?

Latency

Throughput
NF 

Perf.
Firewall NIDS IPsec Router

Virtualization

GPU

Batch Size
How to control the

performance of an NF?

Service Chain Based Scheduling

• Service chain based scheduling and resource allocation
• Locate the bottleneck NF (the NF with the lowest throughput T)
• Allocate resources for all NFs in the service chain to achieve throughput T * (1+P) (0<P<1)

Firewall NIDS IPsec Router

Firewall NIDS IPsec Router

• How to optimize the performance of a service chain with limited compute resources
• NFs have different processing tasks

5#SM 5 5 5
6Throughput (Mpps) 3 4 10

3
Fairness

SMs

Throughput improves
by P in each round

NF2

Framework

NF1

Framework

NFn

Framework

Service Chain Based Scheduling

GPU

Manager

Common Context
Hypervisor

Switch

NIC

… …

Scheduler

Streaming
Multiprocessor

Traffic  
Speed 1. Batch size 

2. #Thread blk

B1 B2

NF1:5 NF2:4 NF3:7

Bn

VMs

NF1 NFn

… …

NF2

Framework Framework Framework

IsoPointer for GPU Memory Isolation

GPU

Manager

Common Context

Switch

NIC

Scheduler

IsoPointer:
guarantee GPU 
memory isolationMa

*Pa

Mb

*Pb

*P —> Memory Region
• Base Address (B)
• Memory Size (S)

Pointer access checking:
B <= P < B+S

NF Development

GPU

Manager

Common Context

Switch

NIC

Scheduler

NF1 NFnNF2

Framework Framework Framework

• Framework handles all
common operations

… …

• Repetitive development efforts
• CPU-GPU pipeline
• Manage CPU threads
• Communicate with Manager
• Packet I/O with Switch
• … …

NF Development

GPU

Manager
Common Context

Switch

NIC

NF1 NFnNF2

Scheduler

Framework Framework Framework

Abstraction

NF Spec.

Abstraction

NF Spec.

Abstraction

NF Spec.

• Framework handles all
common operations

• Abstraction to simplify NF
development

… …

• Repetitive development efforts
• CPU-GPU pipeline
• Manage CPU threads
• Communicate with Manager
• Packet I/O with Switch
• … …

NF Development

NF1

Framework

Abstraction

NF Spec.

GPU
Processing

Pre-
Processing

Post-
Processing

• pre_pkt_handler • post_pkt_handler
• memcpy_htod
• set_kernel_args
• memcpy_dtoh

+ GPU
Kernel

Core functions

CPU code (Router)

Implementation =
Significantly reduces 
development efforts

called for each pktcalled for each kernelcalled for each pkt

Evaluation

• Hardware

CPU:  
Intel Xeon  

E5-2650 v4

GPU:  
NVIDIA GTX 

TITAN X

NIC: 
Intel XL710 

40Gbps

• Software
• Virtualization: Docker 17.03.0-ce
• NIC Driver & Library: DPDK 17.02.1
• OS: CentOS 7.3.1611, Linux kernel 3.8.0-30

• Service Chains
• 2 NFs:

• 3 NFs:

• 4 NFs:

NIDSIPsec

Firewall NIDSIPsec

NIDSIPsec Router

Firewall NIDSIPsec Router

{

Throughput

• Comparison with Temporal GPU Sharing

N
or

m
al

ize
d

Th
ro

ug
hp

ut

0.5

0.75

1

1.25

1.5

Packet Size (Byte)
64 128 256 512 1024 1518

Temporal Share
G-NET (a) IPSec+NIDS

up to 23.8%

0.5

0.75

1

1.25

1.5

Packet Size (Byte)
64 128 256 512 1024 1518

(b) Firewall+IPSec+NIDS

up to 25.9%

N
or

m
al

ize
d

Th
ro

ug
hp

ut

0.5

0.75

1

1.25

1.5

Packet Size (Byte)
64 128 256 512 1024 1518

(c) IPSec+NIDS+Router

up to 21.5%

0.5

1

1.5

2

Packet Size (Byte)
64 128 256 512 1024 1518

(d) Firewall+IPSec+NIDS+Router

up to 70.8%
More Resource

Competition with
four NFs

Scheduling

• Service chain scheduling scheme comparison
• G-NET: optimize the performance of the service chain
• FairShare: Evenly partition compute resources among NFs
• UncoShare: Each NF tries to maximize its resource allocation

Th
ro

ug
hp

ut

Im
pr

ov
em

en
t

0

0.2

0.4

0.6

0.8

1

Packet Size (Byte)
64 128 256 512 1024 1518

FairShare UncoShare G-NET

Firewall + IPSec + NIDS + Router

10.7% average improvement over FairShare
80.5% average improvement over UncoShare

Latency

C
DF

0

0.25

0.5

0.75

1

Round Trip Time (microsecond)
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

NIDS IPSec+NIDS Firewall+IPSec+NIDS Firewall+IPSec+NIDS+Router

(b) 95th percentile latency

0.5

0.75

1

1.25

1.5

IPSec+NIDS Firewall+ 
IPSec+NIDS

Firewall+IPSec+ 
NIDS+Router

G-NET Temporal GPU Sharing

95th

N
or

m
al

ize
d

La
te

nc
y

0.5

0.75

1

1.25

1.5

IPSec+NIDS Firewall+ 
IPSec+NIDS

Firewall+IPSec+ 
NIDS+Router

(a) 50th percentile latency

50th

50th: ~20% 95th: 25% - 44%

Conclusion

• G-NET:
• An NFV system that efficiently utilizes GPUs with spatial GPU sharing
• Service chain based scheduling and resource allocation scheme
• Memory isolation with IsoPointer
• Abstraction that simplifies building GPU-accelerated NFs

• Experimental Results （Compare with temporal GPU sharing）
• Enhances throughput by up to 70.8%
• Reduces latency by up to 44.3%

G-NET
High-efficient platform for building GPU-based NFV systems

