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• NFV	promises	the	benefit	of	virtualization;	Elastic	scaling	is	
one	of	such	benefits.

• Elastic	scaling:	Adjusting	the	number	of	NF	instances	in	
response	to	varying	load.

• In	practice,	realizing	elastic	scaling	comes	at	a	significant	cost	
of	correctness	and	performance.

Elastic	Scaling	of	NFs
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Packets
SDN	controller

Forwarding	rule

NF	controller

Adjust	#	of	instances

Instance	1 Instance	N.	.	.	.	.	.	.	.	.	



Requirements	of	Elastic	Scaling

• Correct	NF	operations
– Multiple	instances	work	like	a	single	instance,	no	matter	how	many	

and	where	they	are.

• High	performance
– High	throughput	(10s	– 100s	of	Mpps)
– Low	latency	(sub-millisecond)

• Scaling	events	should	not	compromise	above.
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Stateful NFs	make	elastic	scaling	challenging.



Background:	NF	State	Types

YES: Partitionable NO:	Non-partitionable
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• TCP	connection	state
• Per-flow	statistics

• Attack	detection	status	such	as	port	
scanner	and	password	guesser

Inst	1 Inst	2

P PPPPP

locally	accessed remotely	accessed

Can	state	be	distributed	in	a	way	that	no	remote	access	is	necessary?

Inst	1 Inst	2

P PPPPP

Remote	access	cost	is	expensive	State	locality	changes	when	scaling



Partitionable	State:	Scaling	Breaks	Correctness
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Prior	NF	state	management	models
(or,	why	managing	NF	state is	so	challenging?)

6



Traditional	Model:	Local-only	
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• NF	states	are	in	local	memory
L No	sharing	support					L Incorrect	behavior	when	scale-out

Packets

Local	
memory

.	.	.	. . .	.	.



Remote-Only	Model	
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• All	state	management	is	offloaded	to	remote	storage

Packets

.	.	.	. . .	.	.

Remote	shared	
memory



Remote-Only	Sacrifices	Performance
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*	For	remote-only,	we	follow	the	algorithm	described	in	“Stateless	Network	Functions:	
Breaking	the	Tight	Coupling	of	State	and	Processing”,	NSDI	2017

L Losing	throughput L Inflating packet	latency



Local+Remote Model
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• All	state	access	is	local
• Out-of-band	control	for	state	synchronization

Packets

Local	
memory

.	.	.	. . .	.	.

export,	import, merge	state
Synchronize	state

NF	controller



Stop-Synchronize-Resume:	NO	GOOD

• Centralized	controller	keeps	state	locality	and	consistency+
– Proactively	prepare	state	before	it	is	accessed

11+	SplitMerge[NSDI	2013],	OpenNF[SIGCOMM	2015]
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Local+Remote Trades	Performance	for	Correctness
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* “OpenNF:	Enabling	Innovation	in	Network	Function	Control”,	SIGCOMM	2014

OpenNF*,	PRADS	(monitoring)
10kpps,	1500	flows	context	migration	from	NF1	to	NF2

L 100s	of	ms median	latencies

System	pause	



Summary	on	State	Management	Model
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Normal Operation Scaling Operation

Local-only L No	scaling

Remote-only L Low	performance J No disruption

Local	+	Remote J Little	overhead L System-wide	pause

Normal Operation Scaling Operation

Local-only L No	scaling

Remote-only L Low	performance J No disruption

Local	+	Remote J Little	overhead L System-wide	pause

Distributed
Shared	Space J Little	overhead JMinimal disruption

Normal Operation
(Without	scaling-out) Scaling-out



PPP
PP

Load	Balancer
(Switch	/	SDN	Controller)

.	.	.	. . .	.	.

S6:	A	Framework	to	Build	Scalable	NFs
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Distributed	Shared	Space

Locally	distributed à Minimal	performance	overhead

à State	sharing

à No	system-wide	pausing	
during	scaling	events

Any	NF	can	access	to	any	state



S6	Scales	Elastically	and	Gracefully
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local+remote
(OpenNF*)

Distributed Shared
(S6)

10kpps,	1.5k	flows

* “OpenNF:	Enabling	Innovation	in	Network	Function	Control”,	SIGCOMM	2014

700kpps,	8k	flows

Sub-millisecond	median	latency

Overall	throughput	keeps	stable

Even	with	more	extreme	scenarios,
1000x higher	workload	(Mpps),	1000x lower	median	latency



S6:	A	Framework	to	Build	Scalable	NFs
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1. NF	State	Abstraction

2. Elastic	Scaling	

3. S6	Programming	models

4. Optimizations	for	minimizing	remote	access	costs



Object	for	NF	State	Abstraction
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ü Integrity	protection	of	state

- Single	writer	vs.	Multiple	writer	

ü Optimization	per	object
- Performance	vs.	consistency:
Different	sweet	spot	per	object

Object	encapsulation enables	easy	state	management

Object
Data

Operations

Interfaces
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Optimization	Strategies	for	NF	State

State	type?

Access	pattern?Local	access

Non-blocking	updates
Merging	local	replicas	Caching

Partitionable Non-partitionable

Read-heavy Write-heavy

*From	our	survey	on	8	popular	network	functions

Most	NF	state	variables	are	covered	by	these	strategies*	
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Examples	of	Optimization	for	NF	state

class Counter {

private:

uint32_t counter; 

public:

uint32_t int_and_get();

void inc(uint32_t x);

uint32_t get() const ;

};

: public MultiWriter {

untether;

stale;

non-blocking	update

return	from	cache	

function	shipping	for	updating	from	multiple	instances
c.f.,	SingleWriter



S6:	A	Framework	to	Build	Scalable	NFs
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1. NF	State	Abstraction

2. Elastic	Scaling	

3. S6	Programming	models

4. Optimizations	for	minimizing	remote	access	costs



S6	Shared	Object	Space	Architecture
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where(Key1)=A

.......
get(Key1)
.......

Instance	A Instance	B

Object
Space

Key	
Space

NF	app

Obj1

Hash(Key)={x|A,B}

create new object
or access existing object



Hash(Key)={x|A,B}

Elastic	Scaling	Requires	Space	Reorganizing
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where(Key1)=A

.......
get(Key1)
.......

Instance	A Instance	B

Object
Space

Key	
Space

NF	app

Obj1

Hash(Key)={x|A,B}

Instance	C

Hash_v2(Key)={x|A,B,C}

Changing	locality	of	partitionable	state

New	hash	function	for	key	distribution



State	Migration	for	Locality
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Instance	C

where(Key1)=A

Instance	A Instance	B

Object
Space

Key	
Space

NF	app

Obj1

.......
get(Key1)
.......

where(Key1)=C
local	access

Obj1migrationObj1

*	Key	ownership	is	also	transferred	for	new	hash

When	scaling-out,	does	bursty state	migration	
degrade	performance?



State	Migration	Happens	Gradually	Behind	

• Flow	state	doesn’t	need	to	be	migrated	at	once
– Packets	in	the	same	flow	come	in	bursts
– Long	inter-arrival	time	between	packet	chunks	in	the	same	flow

• Micro-threading:	Keep	processing	even	with	unavoidable	
blocking	remote	access
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LWorst-case J Real	network	load	



S6:	A	Framework	to	Build	Scalable	NFs
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1. NF	State	Abstraction

2. Elastic	Scaling	

3. S6	Programming	models

4. Optimizations	for	minimizing	remote	access	costs

More	details	in	the	paper



Implementation

• S6	Compiler
– Compiles	S6	C++	extension	into	plain	C++	code
– Generates	S6	object	wrappers	(stub,	skeleton)
– Uses	clang	3.6	library

• S6	Runtime
– Built	in	12K	lines	of	C++	code
– Uses	boost	co-routine	for	micro-threads

• Applications
– PRADS:	a	Passive	Real-time	Asset	Detection	System
– Snort:	Intrusion	Detection	System
– NAT
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Applications

• PRADS
– a	Passive	Real-time	Asset	Detection	

System
– allows	to	access	real-time	network	

monitoring	results
• protocols,	services,	and	devices
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State Size	(B) Update Access	Frequency

Flow 160 Exclusive Per-packet	RW

Statistics 208 Concurrent Per-packet	RW

Asset 112	+	64n Concurrent Rarely	R
Per-packet	W

Config 1.16Mi Exclusive Per-packet	R
Rarely W

Flow	
hashtable

40n Concurrent Per-packet	RW

Asset	
hashtable

32n Concurrent Per-packet	RW

• Snort
– Intrusion	Detection	System
– We	port	logic	to	detect	

malicious	packets

State Size	(B) Update Access	Frequency

Flow 160~32Ki Exclusive Per-packet	RW

Whitelist 12 +	28n Exclusive Per-packet	RW

Malicious 12	+	28n Concurrent Per-packet	RW

Config 1.43	Mi Exclusive Per-packet	R
Rarely W

Maclicious
hashtable

32n Concurrent Per-packet	RW

Whitelisth
ashtable

32n Concurrent Per-packet	RW



Evaluation
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• Scaling	experiments
– Use	Amazon	EC2	instance	as	NF	instances	(Docket	container)
– C4.xlarge,	4	cores	@	2.90	GHz

• Workloads:	Synthetic	TCP	traffic	
– Empirical	flow	distribution	in	size	and	arrival	rate



S6	Performance	During	Normal	Phase

29

0

0.2

0.4

0.6

0.8

1

NAT PRADS IDS

Re
la
te
iv
e	
Th

ro
ug
hp

ut

local-only remote-only distributed/shared

1

10

100

1000

10000

NAT PRADS IDS
La
te
nc
y	
(u
s)

Keys	are	evenly	distributed	through	2	instances
à Half	of	the	first	state	accesses	are	remote

J S6	preserves	80	~	95%	
throughput	from	local-only

J S6	keeps	similar	median	
latency	from	local-only

(S6)



Space	Reorganization	Overhead	during	Scale-out
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• Latency	distribution	of	scale-out
– Scale-out	from	1	to	2	instances	(1Mpps	à 0.5Mpps	*	2)
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Size	of	objects	to	migrate

16k Objects	migration/instance

control	channel	becomes	bottleneck

S6	shows	minimal	performance	overhead	when	scaling-out

sub-millisecond	median	latencies



Conclusion

S6:	A	framework	to	build	scalable	NFs
• Allows	NF	state	to	be	shared/distributed/migrated across	instances
• Achieves	high	performance	with:	

– State	abstractions	specifying	state	requirements
– When	scaling,	gradual	object	migration	and	space	reorganization

• Has	minimal	performance	impact	during	normal	operations
as	well	as	scaling	event

• https://github.com/NetSys/S6
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