
PLOVER: Fast, Multi-core Scalable
Virtual Machine Fault-tolerance

Cheng Wang, Xusheng Chen, Weiwei Jia, Boxuan Li, Haoran Qiu,
Shixiong Zhao, and Heming Cui

The University of Hong Kong

1

Virtual machines are pervasive in datacenters
Physical machine

Guest VM Guest VM

VMM

…

VM fault tolerance is crucial!
2

Physical machine

Guest VM Guest VM

VMM

…Hardware
Failure

…

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

memory
pages

client

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

Output buffer

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

Output buffer

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

Output buffer

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

Output buffer

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

2. Backup acknowledges to the primary
when complete state has been
received.

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

Output buffer

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

ACK

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

2. Backup acknowledges to the primary
when complete state has been
received.

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

Output buffer

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

ACK

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

2. Backup acknowledges to the primary
when complete state has been
received.

3. Primary’s buffered network output is
released.

Classic VM replication -
primary/backup approach

3

Remus [NSDI’08]

ACK
Primary

Guest VM

service

VMM

Output buffer

memory
pages

backup

Guest VM

service

VMM

memory
pages

client

ACK

Synchronize primary/backup every 25ms
1. Pause primary VM (every 25ms) and

transmit all changed state (e.g.,
memory pages) to backup.

2. Backup acknowledges to the primary
when complete state has been
received.

3. Primary’s buffered network output is
released.

Two limitations of primary/backup approach
(1)

• Too many memory pages have to be copied and transferred, greatly
ballooned client-perceived latency

4

of concurrent clients Page transfer size (MB)
16 20.9

48 68.4

80 110.5

0

100

200

300

400

500

600

16 48 80

La
te

nc
y

(u
s)

Number of concurrent clients

Redis latency with varied # of clients (4 vCPUs per VM)
unreplicated Remus (25ms synchronization interval)

Two limitations of primary/backup approach
(2)

• The split-brain problem

5

ACK
Primary

Guest VM

KVS

VMM

Output buffer

page

Backup

Guest VM

KVS

VMM

page

client1 client2

Two limitations of primary/backup approach
(2)

• The split-brain problem

5

ACK
Primary

Guest VM

KVS

VMM

Output buffer

page

Backup

Guest VM

KVS

VMM

page

client1 client2

Two limitations of primary/backup approach
(2)

• The split-brain problem

5

ACK
Primary

Guest VM

KVS

VMM

Output buffer

page

Backup

Guest VM

KVS

VMM

page

client1 client2

Outdated primary New primary

Two limitations of primary/backup approach
(2)

• The split-brain problem

5

ACK
Primary

Guest VM

KVS

VMM

Output buffer

page

Backup

Guest VM

KVS

VMM

page

client1 client2

X=5 x=7

Outdated primary New primary

Two limitations of primary/backup approach
(2)

• The split-brain problem

5

ACK
Primary

Guest VM

KVS

VMM

Output buffer

page

Backup

Guest VM

KVS

VMM

page

client1 client2

X=5 x=7

Outdated primary New primary

Two limitations of primary/backup approach
(2)

• The split-brain problem

5

ACK
Primary

Guest VM

KVS

VMM

Output buffer

page

Backup

Guest VM

KVS

VMM

page

client1 client2

x =5 x =7

X=5 x=7

Outdated primary New primary

State Machine Replication (SMR): Powerful

6

service

backup

client1 client2

service

primary

service

backup

consensus log consensus logconsensus log

State Machine Replication (SMR): Powerful

6

service

backup

client1 client2

service

primary

service

backup

consensus log consensus logconsensus log

State Machine Replication (SMR): Powerful

6

service

backup

client1 client2

service

primary

service

backup

consensus log consensus logconsensus log

State Machine Replication (SMR): Powerful

6

service

backup

client1 client2

service

primary

service

backup

consensus log consensus logconsensus log

• SMR systems: Chubby, Zookeeper, Raft [ATC’14], Consensus in a box [NSDI’15], NOPaxos[OSDI’16], APUS [SoCC’17]

• Ensure same execution states

State Machine Replication (SMR): Powerful

6

service

backup

client1 client2

service

primary

service

backup

consensus log consensus logconsensus log

• SMR systems: Chubby, Zookeeper, Raft [ATC’14], Consensus in a box [NSDI’15], NOPaxos[OSDI’16], APUS [SoCC’17]

• Ensure same execution states
• Strong fault tolerance guarantee without split-brain problem

State Machine Replication (SMR): Powerful

6

service

backup

client1 client2

service

primary

service

backup

consensus log consensus logconsensus log

• SMR systems: Chubby, Zookeeper, Raft [ATC’14], Consensus in a box [NSDI’15], NOPaxos[OSDI’16], APUS [SoCC’17]

• Ensure same execution states
• Strong fault tolerance guarantee without split-brain problem

• Need to handle non-determinism
• Deterministic multithreading (e.g., CRANE [SOSP’15]) - slow
• Manually annotate service code to capture non-determinism (e.g., Eve [OSDI’12]) - error prone

Making a choice

7

Primary/backup approach
Pros:
• Automatically handle non-determinism

Cons:
• Unsatisfactory performance due to transferring

large amount of state
• Have the split-brain problem

State machine replication
Pros:
• Good performance by ensuring the same

execution states
• Solve the split-brain problem

Cons:
• Hard to handle non-determinism

PLOVER: Combining SMR and primary/backup

• Simple to achieve by carefully designing the consensus protocol
• Step 1: Use Paxos to ensure the same total order of requests for replicas
• Step 2: Invoke VM synchronization periodically and then release replies

• Combines the benefits of SMR and primary/backup
• Step 1 makes primary/backup have mostly the same memory (up to 97%), then

PLOVER need only copy and transfer a small portion of the memory
• Step 2 automatically addresses non-determinism and ensures external consistency

• Challenges:
• How to achieve consensus and synchronize VM efficiently?
• When to do the VM synchronization for primary/backup to maximize the same

memory pages?

8

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

consensus Output buffer consensus

VMM

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

consensus Output buffer consensus

VMM

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

consensus Output buffer consensus

RDMA-based input consensus:
• Primary: propose request and execute
• Backup: agree on request and execute
• Witness: agree on request and ignore

VMM

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

consensus Output buffer consensus

RDMA
(<10us)

RDMA-based input consensus:
• Primary: propose request and execute
• Backup: agree on request and execute
• Witness: agree on request and ignore

VMM

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

consensus Output buffer consensus

RDMA
(<10us)

RDMA-based input consensus:
• Primary: propose request and execute
• Backup: agree on request and execute
• Witness: agree on request and ignore

VMM

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

consensus Output buffer consensus

RDMA
(<10us)

RDMA-based input consensus:
• Primary: propose request and execute
• Backup: agree on request and execute
• Witness: agree on request and ignore

VMM

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

RDMA-based VM synchronization:

consensus Output buffer consensus

RDMA
(<10us)

RDMA-based input consensus:
• Primary: propose request and execute
• Backup: agree on request and execute
• Witness: agree on request and ignore

VMM

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

RDMA-based VM synchronization:
1. Exchange and union dirty page bitmap
2. Compute hash of each dirty page
3. Compare hashes
4. Transfer divergent pages

consensus Output buffer consensus

RDMA
(<10us)

RDMA RDMA-based input consensus:
• Primary: propose request and execute
• Backup: agree on request and execute
• Witness: agree on request and ignore

VMM

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

RDMA-based VM synchronization:
1. Exchange and union dirty page bitmap
2. Compute hash of each dirty page
3. Compare hashes
4. Transfer divergent pages

consensus Output buffer consensus

RDMA
(<10us)

RDMA RDMA-based input consensus:
• Primary: propose request and execute
• Backup: agree on request and execute
• Witness: agree on request and ignore

VMM

PLOVER architecture

9

Primary Backup Witness

VM Sync VM

consensusOutput buffer

VMM

service

Sync VM VM

service

Client

log log

page page

RDMA-based VM synchronization:
1. Exchange and union dirty page bitmap
2. Compute hash of each dirty page
3. Compare hashes
4. Transfer divergent pages

consensus Output buffer consensus

RDMA
(<10us)

RDMA RDMA-based input consensus:
• Primary: propose request and execute
• Backup: agree on request and execute
• Witness: agree on request and ignore

VMM

When to decide VM synchronization period?

10

Primary Backup

VM Sync VM

VMM

service

Sync VM VM

service

page page

VMM

When to decide VM synchronization period?

10

Primary Backup

VM Sync VM

VMM

service

Sync VM VM

service

page page

VMM

When to decide VM synchronization period?

10

Primary Backup

VM Sync VM

VMM

service

Sync VM VM

service

page page

VMM

When to decide VM synchronization period?

10

Primary Backup

VM Sync VM

VMM

service

Sync VM VM

service

page page

VMM

Issue of not choosing synchronization timing carefully
• Large amount of divergent state

Synchronize when processing is almost finished!
• CPU and disk usage is almost zero when service finishes

processing
• Non-intrusive scheme to monitor service state
• Invoke synchronization when CPU and disk usage is

nearly zero

PLOVER addressed other practical challenges

• Concurrent hash computation of dirty pages
• Fast consensus without interrupting the VMM’s I/O event loop
• Collect service running state from VMM without hurting performance
• Full integration with KVM-QEMU
• …

11

Evaluation setup

• Three replica machines
• Dell R430 server
• Connected with 40Gbps network
• Guest VM configured with 4 vCPU and 16GB memory

• Metrics: measured both throughput and latency with 95% percentile

• Compared with three state-of-the-art VM fault tolerance systems
• Remus (NSDI’08): use its latest KVM-based implementation developed by KVM
• STR (DSN’09) and COLO (SoCC’13): various optimizations of Remus. E.g., COLO skips

synchronization if network outputs from two VMs are the same

12

• Evaluated PLOVER on 12 programs, grouped into 8 services

13

service Program type Benchmark Workload

Redis Key value store self 50% SET, 50% GET

SSDB Key value store self 50% SET, 50% GET

MediaTomb Multimedia storage server ApacheBench Transcoding videos

pgSQL Database server pgbench TPC-B

DjCMS
(Nginx, Python, MySQL)

Content management system ApacheBench Web requests on a dashboard
page

Tomcat HTTP web server ApacheBench Web requests on a shopping
store page

lighttpd HTTP web server ApacheBench Watermark image with PHP

Node.js HTTP web server ApacheBench Web requests on a messenger
bot

Evaluation questions

• How does PLOVER compare to unreplicated VM and state-of-the-art
VM fault tolerance systems?

• How does PLOVER scale to multi-core?
• What is PLOVER’s CPU footprint?
• How robust is PLOVER to failures?

• Handle network partition, leader failure, etc, efficiently

• Comparison of PLOVER and other three systems on different
parameter settings?
• PLOVER is still much faster than the three systems

14

Throughput on four services

15

Throughput on the other four services

16

Lighttpd+PHP performance analysis

17

Interval Dirty Page Same Transfer
86ms 33.9K 97% 2.8ms

Sync-interval Dirty Page Transfer
25ms (Remus-Xen default) 33.3K 53.5ms

100ms (Remus-KVM default) 33.9K 55.7ms

PLOVER:

Remus:

Analysis:
PLOVER needs to transfer only 33.9k * 3% = 1.0K pages,
But Remus, STR, and COLO need to transfer all or most of
the 33K dirty pages. E.g., since most network outputs from
two VMs differ, COLO has to do synchronizations for
almost every output packet.

lighttpd + PHP

pgSQL performance analysis

18

PLOVER is slower than COLO on pgSQL
• COLO safely skips synchronization because

most network outputs from two VMs are
the same

Performance Summary (4 vCPU per VM)

• PLOVER’s throughput is 21% lower than unreplicated, 0.9X higher than
Remus, 1.0X higher than COLO, 1.4X higher than STR
• 72% ~ 97% dirty memory pages between PLOVER’s primary and backup are the same
• PLOVER’s TCP implementation throughput is still 0.9X higher the three systems on

average 19

Multi-core Scalability (4vCPU - 16vCPU per VM)

• Redis, DjCMS, pgSQL, and Node.js
are not listed because they don’t
need many vCPUs per VM to
improve throughput
• E.g., Redis is single-threaded

20

CPU footprint

21

Conclusion and Ongoing Work

• PLOVER: efficiently replicate VM with strong fault tolerance
• Low performance overhead, scalable to multi-core, robust to replica failures

• Collaborating with Huawei for technology transfer
• Funded by Huawei Innovation Research Program 2017
• Submitted a patent (Patent Cooperation Treaty ID: 85714660PCT01)

• https://github.com/hku-systems/plover

22

