Inaudible Voice Commands:
The Long-Range Attack and Defense

Nirupam Roy
Sheng Shen
Haitham Hassanieh
Romit Roy Choudhury

University of Illinois at Urbana-Champaign
50 million voice assistants are sold in US
Inaudible Acoustics

Normal Sound
(< 24 kHz)

Ultrasound
(> 25 kHz)

“Inaudible Acoustics”
(> 25 kHz)

“Alexa, open the garage door!”
Talk Outline

0. [BackDoor], [DolphinAttack], [Princeton Video]

MobiSys’17 (Best Paper) CCS’17 arXiv
Talk Outline

0. [BackDoor], [DolphinAttack], [Princeton Video]

Today’s Talk:

1. How to launch long-range (realistic) attacks?

2. How to defend against these attacks?
Today’s Talk:

1. How to launch long-range (realistic) attacks?

2. How to defend against these attacks?
Microphone frequency spectrum

Amplitude

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Diaphragm → Amplifier → Filter → ADC → Digitized signal
Amplifier
Filter
ADC

Microphone
filter

Amplitude

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Microphone frequency spectrum

Diaphragm → Air Vibration → Electric Voltage

Filter → ADC
\[V_{out} = a_1 V_{in} \]
\[V_{out} = a_1 V_{in} \]

The output voltage \(V_{out} \) is a linear combination of the input voltage \(V_{in} \) and higher-order terms:

\[V_{out} = a_1 V_{in} + a_2 V_{in}^2 + \ldots \]

The graph on the right shows the nonlinear behavior of the system, with the input frequency on the x-axis and the output on the y-axis. The diagram on the bottom left illustrates the process of sound amplification, from the diaphragm to the amplifier, with a nonlinear response curve indicating the amplification of the input signal.
\[V_{out} = a_1 V_{in} \]

\[V_{out} = a_1 V_{in} + a_2 V_{in}^2 + \ldots \]
\[V_{out} = a_1 V_{in} + a_2 V_{in}^2 \]

\[
\left(\sin F_1 + \sin F_2 \right)^2 = -\cos 2F_1 \\
- \cos 2F_2 \\
- \cos (F_1 + F_2) \\
+ \cos (F_1 - F_2)
\]
\[V_{out} = a_1 V_{in} + a_2 V_{in}^2 \]

\[
(\sin F_1 + \sin F_2)^2 = -\cos 2F_1 - \cos 2F_2 - \cos (F_1 + F_2) + \cos (F_1 - F_2)
\]
$V_{out} = a_1 V_{in} + a_2 V_{in}^2$

$(\sin F_1 + \sin F_2)^2 = -\cos 2F_1 - \cos 2F_2 - \cos (F_1 + F_2) + \cos (F_1 - F_2)$
\[V_{out} = a_1 V_{in} + a_2 V_{in}^2 \]

\[
(\sin F_1 + \sin F_2)^2 = -\cos 2F_1 - \cos 2F_2 - \cos (F_1 + F_2) + \cos (F_1 - F_2)
\]
The diagram illustrates the frequency spectrum and amplitude response of a microphone with a filter. It shows audible and inaudible frequency ranges, with specific notations for $(F_1 - F_2)$, F_2, and F_1. The microphone filter is depicted as affecting the amplitude at various frequencies.
V(t) = “Alexa, open the garage door!”
V(t) = “Alexa, open the garage door!”
3-5 ft
Can someone attack from a longer range?
Can someone attack from a longer range?
Can someone attack from a longer range?

High power makes ultrasonic speakers audible
Speakers have nonlinearity too!
Voice Command: $v(t)$
Speaker Nonlinearity

\[V_{in} = v(t)\sin(\omega_1 t) \]

\[a_1 V_{in} + a_2 V_{in}^2 \]
$V_{in} = v(t)\sin(\omega_1 t)$

Speaker Nonlinearity

$a_1 V_{in} + a_2 V_{in}^2$

$a_1 v(t)\sin(\omega_1 t)$
Amplitude

$V_{in} = v(t) \sin(\omega_1 t)$

Speaker Nonlinearity

$a_1 V_{in} + a_2 V_{in}^2$

$a_1 v(t) \sin(\omega_1 t) + a_2 \left(v^2(t) - v^2(t) \cos(2\omega_1 t) \right)$
$V_{in} = v(t) \sin(\omega_1 t)$

Speaker Nonlinearity:

$\alpha_1 V_{in} + \alpha_2 V_{in}^2$

General to all speakers!

Our Solution: "Leakage Optimization"
Speaker Nonlinearity \rightarrow Audible Leakage

Speaker input

$V(f)$

Bandwidth: B

Speaker output

$V(-f) \ast V(f)$

Bandwidth: B
Speaker Nonlinearity \rightarrow Audible Leakage

- Speaker input
- Speaker output

Amplitude

Frequency
Speaker Nonlinearity \rightarrow Audible Leakage

Speaker input

Speaker output
Speaker Nonlinearity \rightarrow Audible Leakage

Speaker input

Speaker output
Speaker Nonlinearity \rightarrow Audible Leakage

Chopping compresses the leakage band
Maximize $\min_f[T(f) - L(f)]$

subject to $f_0 \leq f_1 \leq f_2 \leq \ldots \leq f_N$
Evaluation
Inaudible voice commands: Long range

Speaker array running leakage optimization

25 feet
Evaluation

Wake-word hit rate

![Graph showing wake-word hit rate vs. attack distance for different voice assistants: Alexa, S-Voice, Siri.](image)
Evaluation

Wake-word hit rate

Command detection accuracy
Evaluation

Maximum activation distance for different input power
Today’s Talk:

1. How to launch long-range (realistic) attacks?

2. How to defend against these attacks?
Talk Outline

0. [BackDoor], [DolphinAttack], [Princeton Video]

Today’s Talk:

1. How to launch long-range (realistic) attacks?

2. How to defend against these attacks?
Core Question:

Is this a “non-linear signal” or normally recorded signal?

Voice signal: $\nu(t)$

Inaudible Voice Attack:

$$[\nu(t) \cdot \sin(\omega_1 t) + c \cdot \sin(\omega_1 t)]^2 = \nu(t) + c'\nu^2(t) + \cdots$$
Core Question:
Is this a “non-linear signal” or normally recorded signal

\[[v(t) \cdot \sin(\omega_1 t) + c \cdot \sin(\omega_1 t)]^2 = v(t) + c'v^2(t) + \cdots \]
Difficult to decouple “voice signal” and “non-linear signal”

Human voice signals present opportunities …
Opportunity #1: Voice > 50 Hz

Human Voice

$v(t)$

Amplitude

Frequency

$v^2(t)$

f

$2f$

$3f$

$4f$
Opportunity #1: Voice > 50 Hz

Human Voice

Energy at sub-50Hz band
Opportunity #2: Correlation

Energy variation in $v(t)$

Energy variation in $v^2(t)$

Correlation
Opportunity #3: Amplitude Skewness

Amplitude skew = $v(t) + v^2(t)$
5000 Test Cases

Amplitude skew

Correlation

Sub-50Hz power

Real voice

Attack voice
Overall Detection Accuracy

![Bar chart showing overall detection accuracy across different loudness levels (dbSPL). Accuracy is consistently high at 1.0 for loudness levels of 50, 60, 70, 80, and 90 dbSPL.]
To summarize...

Inaudible Acoustics (> 25 kHz): “Alexa, open the garage door!”

Ok
Ok
Ok