Vesper: Measuring Time-to-Interactivity for Web Pages

Ravi Netravali*

Vikram Nathan*

James Mickens[‡]

Hari Balakrishnan*

*MIT CSAIL

[‡]Harvard University

The Importance of Page Load Time

Slow page loads → lost revenue and low search rank

Everyone agrees that web pages should load quickly...

...but how should page load time be defined?

Contributions

- 1. **Ready Index (RI)**: analytical definition of page timeto-interactivity in terms of visibility and functionality
- 2. **Vesper**: system that automatically measures RI
- 3. **Optimizing pages for RI**: framework to optimize page loads for time-to-interactivity
- 4. **User studies**: interactive users strongly prefer pages that optimize for RI

Outline

- How pages load today
- Existing Metrics
- Ready Index (RI)
 - Definition
 - Measurement system (Vesper)
- Evaluation
 - RI vs. preexisting metrics
 - Optimizing pages for RI (time-to-interactivity)
 - User studies: how does RI capture user experience?

http://www.amazon.com

browser

browser

browser

browser

Page load time (PLT): time until all objects are fetched and evaluated

Page load time (PLT): time until all objects are fetched and evaluated

Recommended deals: Year-End Deals See all deals

The

Fold

Trending: Year-End Deals See all deals

Fold

Trending: Year-End Deals See all deals

\$80 off echo show

Linear date of the See all deals

\$56.73

\$66.73

\$66.79

\$66.90

\$55.24

Page load time (PLT): time until all objects are fetched and evaluated

Too conservative

Below The Fold

Page load time (PLT): time until all objects are fetched and evaluated

Too conservative

Below The Fold

Page load time (PLT): time until all objects are fetched and evaluated

Too conservative

Below The Fold

Deals \$80 off

Page load time (PLT): time until all objects are fetched and evaluated

Too conservative

The Fold

Deals Below \$80 off

Page load time (PLT): time until all objects are fetched and evaluated

Too conservative

Below The Fold

Deals \$80 off

Page load time (PLT): time until all objects are fetched and evaluated

Too conservative

Speed Index (SI): time to render above-the-fold

Ignores JavaScript that supports functionality

Challenge: nobody knows a good way to automatically identify that interactive state

Challenge: nobody knows a good way to automatically identify that interactive state

- 1. Identify page's interactive state in DOM/JS
- 2. Analytically define rate at which state is visible and functional

Outline

- How pages load today
- Existing Metrics
- Ready Index (RI) + Vesper
- Evaluation

Functionality:
$$F(e,t) = \begin{cases} 0 & t < t_e \\ 1 & t \ge t_e \end{cases}$$

above-the-fold element

time when e's JavaScript handlers are registered, and state that handlers access when fired is loaded

Functionality:
$$F(e,t) = \begin{cases} 0 & t < t_e \\ 1 & t \ge t_e \end{cases}$$

- e = above-the-fold element
- t_e = time when e's handlers are registered,
 and state they access when fired is loaded

Visibility:
$$V(e,t) = \frac{|P_t(e)|}{|P(e)|}$$
 e's paint events that are finished by time t

paint events

that affect e

Functionality:
$$F(e,t) = \begin{cases} 0 & t < t_e \\ 1 & t \ge t_e \end{cases}$$

Visibility:
$$V(e,t) = \frac{|P_t(e)|}{|P(e)|}$$
 $P_t(e) = P_t(e) = P_t$

$$F(e,t) = \begin{cases} 0 & t < t_e \\ 1 & t < t_e \end{cases}$$

- e = above-the-fold element

- t_e = time when e's handlers are registered, and state they access when fired is loaded

- P(e) = paint events that affect e

- P₊(e) = e's paint events that are finished by

$$r(t) = \frac{1}{2} F(e,t) + \frac{1}{2} V(e,t)$$

Functionality:
$$F(e,t) = \begin{cases} 0 & t < t_e \\ 1 & t \ge t_e \end{cases}$$

Visibility:
$$V(e,t) = \frac{|P_t(e)|}{|P(e)|}$$

Visibility:
$$V(e,t) = \frac{|P_t(e)|}{|P(e)|}$$

Element Readiness: $R(e,t) = \frac{1}{2}R(e,t) + \frac{1}{2}V(e,t)$

Page Readiness:
$$R(t) = \sum_{e \in E} A(e)R(e,t)$$
 pixel area of e

Ready Index

Functionality:
$$F(e,t) = \begin{cases} 0 & t < t_e \\ 1 & t \ge t_e \end{cases}$$

Visibility:
$$V(e,t) = \frac{|P_t(e)|}{|P(e)|}$$

Element Readiness:
$$R(e,t) = \frac{1}{2}R(e,t) + \frac{1}{2}V(e,t)$$

Page Readiness:
$$R(t) = \sum A(e)R(e,t)$$

Ready Index:
$$R = \int_0^T 1 - \frac{R(t)}{R(t)} d(t)$$
 loose upper bound on load time

Ready Index

Functionality:
$$F(e,t) = \begin{cases} 0 & t < t_e \\ 1 & t \ge t_e \end{cases}$$

Visibility: $V(e,t) = \frac{|P_t(e)|}{|P(e)|}$

- t_e = time when e's handlers are registered, and state they access when fired is loaded - P(e) = paint events that affect e - P_t(e) = e's paint events that are finished by

$$\frac{\langle e, t \rangle = \frac{1}{|P(e)|}}{|P(e)|}$$

time t
$$V(e,t)$$

Element Readiness:
$$R(e,t) = \frac{1}{2}R(e,t) + \frac{1}{2}V(e,t)$$

Page Readiness: $R(t) = \sum_{i}A(e)R(e,t)$

- e = above-the-fold element

Ready Index:
$$R = \int_0^T 1 - \frac{R(t)}{R(T)} d(t)$$

Ready Time (RT): smallest time when all above-the-fold elements are ready

- T = loose upper bound on load time

Measuring Ready Index (RI)

Measuring Ready Index (RI)

Need to know:

Visible elements and their event handlers

State that handlers access when fired

Effect and timing of browser paint events

Measuring Ready Index (RI)

Need to know:

Visible elements and their event handlers

State that handlers access when fired

Effect and timing of browser paint events

Requirements for instrumentation:

No developer annotations

Low overhead

Generic

Vesper: Overview

Approach: Use two measurement phases to reduce impact of instrumentation

Goal: Identify visible elements, event handlers, and the state handlers access when fired

Goal: Identify visible elements, event handlers, and the state handlers access when fired

Goal: Identify visible elements, event handlers, and the state handlers access when fired

Element visibility: analyze element bounding boxes and CSS rules

Goal: Identify visible elements, event handlers, and the state handlers access when fired

Element visibility: analyze element bounding boxes and CSS rules

Logging event handlers: shim event handler registration mechanisms

Goal: Identify visible elements, event handlers, and the state handlers access when fired

Element visibility: analyze element bounding boxes and CSS rules

Logging event handlers: shim event handler registration mechanisms

Event handler state: fire handlers and log accessed state with Scout

Goal: Identify visible elements, event handlers, and the state handlers access when fired

Element visibility: analyze element bounding boxes and CSS rules

Logging event handlers: shim event handler registration mechanisms

Event handler state: fire handlers and log accessed state with Scout

Phase 1: 4.5% overhead

Goal: Track loading progress of interactive state from Phase 1

JavaScript heap

Goal: Track loading progress of interactive state from Phase 1

Log "last writes" for DOM/heap state

Goal: Track loading progress of interactive state from Phase 1

Log "last writes" for DOM/heap state


```
var x = 50; var y = 0;
while (y < 50) {
    x = x + 1;
    y = y + 1;
}
x = x + 5;</pre>
```

Goal: Track loading progress of interactive state from Phase 1

Log "last writes" for DOM/heap state


```
var x = 50; var y = 0;
while (y < 50) {
  x = x + 1:
  v = v + 1:
  if (y == 49) {
    vesper log(y);
x = x + 5:
vesper log(x);
```

- Log "last writes" for DOM/heap state
- Track browser layout/paint events


```
var x = 50; var y = 0;
while (y < 50) {
  x = x + 1:
  v = v + 1:
  if (y == 49) {
    vesper log(y);
x = x + 5:
vesper log(x);
```

Goal: Track loading progress of interactive state from Phase 1

- Log "last writes" for DOM/heap state
- Track browser layout/paint events

Phase 2: 1.9% overhead

```
var x = 50; var y = 0;
while (y < 50) {
  x = x + 1:
  v = v + 1:
  if (y == 49) {
    vesper log(y);
x = x + 5;
vesper log(x);
```

Outline

How pages load today

Existing Metrics

Ready Index (RI) + Vesper

Evaluation

Evaluation Outline

 Are there differences between Ready Index and existing metrics?

Can we optimize a page load for Ready Index?

 How well does Ready Index capture user experience?

AFT vs. RT vs. PLT

AFT vs. RT vs. PLT

Above-the-fold time (AFT) underestimates 'interactive time' by 2.56 seconds!

AFT vs. RT vs. PLT

Above-the-fold time (AFT) underestimates 'interactive time' by 2.56 seconds!

Page load time (PLT)

overestimates 'interactive

time' by 2.72 seconds!

350 Popular Sites: AFT vs. RT vs. PLT

350 Popular Sites: AFT vs. RT vs. PLT

PLT > RT > AFT (differences of 24.0%-64.3%, 0.3-3.6 seconds)

350 Popular Sites: AFT vs. RT vs. PLT

- PLT > RT > AFT (differences of 24.0%-64.3%, 0.3-3.6 seconds)
- Differences increase as RTTs increase

350 Popular Sites: SI vs. RI

- Vesper: identify objects of importance
- Polaris: optimize loading of important objects
 - Dependency-aware request scheduler that uses dynamic critical path analysis to reduce page load times

- Vesper: identify objects of importance
- Polaris: optimize loading of important objects
 - Dependency-aware request scheduler that uses dynamic critical path analysis to reduce page load times

Polaris_PLT

- Vesper: identify objects of importance
- Polaris: optimize loading of important objects
 - Dependency-aware request scheduler that uses dynamic critical path analysis to reduce page load times

- Vesper: identify objects of importance
- Polaris: optimize loading of important objects
 - Dependency-aware request scheduler that uses dynamic critical path analysis to reduce page load times

Optimization Results

12 Mbits/s, 100 ms

Weight	PLT	RI	SI
Polaris-PLT	36%	8%	-7%
Polaris-RI	23%	29%	12%
Polaris-SI	10%	14%	18%

Optimization Results

12 Mbits/s, 100 ms

Weight	PLT	RI	SI
Polaris-PLT	36%	8%	-7%
Polaris-RI	23%	29%	12%
Polaris-SI	10%	14%	18%

Targeted metrics improve the most!

User Study 1: Interactivity

- Perform interactive task with Polaris-PLT, Polaris-RI, Polaris-SI: which is fastest?
- 5 sites, 85 users

User Study 1: Interactivity

- Perform interactive task with Polaris-PLT, Polaris-RI, Polaris-SI: which is fastest?
- 5 sites, 85 users

Scheduling policy	Preference percentage
Polaris-RI	83%
Polaris-SI	4%
Polaris-PLT	7%
None	6%

Takeaway: interactive users strongly prefer pages optimized for RI

User Study 2: Rendering

15 sites, 73 users

User Study 2: Rendering

15 sites, 73 users

Takeaway:
Polaris-SI is best
for rendering,
but Polaris-RI is
comparable

Conclusion

- Existing web performance metrics ignore page interactivity
 - Over or underestimate time-to-interactivity by 24%-64%
- Ready Index (RI): analytical definition of page time-tointeractivity
- Vesper: system to automatically measure RI by identifying and tracking loading of page's interactive state
 - Helps reduce time-to-interactivity by 32%