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A scheme that ensures and enforces accounting of network-
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• How and by how much is isolation broken

• Iron’s Design

• Accounting of per-packet processing cost

• Ensuring isolation via enforcement 

• Integration with Linux scheduler 

• Hardware-based packet dropping 

• Evaluation 
• Controlled workload

• Realistic workload

Outline
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Penalty factor never exceeds 1.04

Setup

• 48 containers spread over 6 machines

• Each job runs over 24 containers

MapReduce jobs as victim:

• wordcount: counts word frequency 
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Summary

• Evaluated the interference caused by network-based containers. 

• Provided hardened isolation for network-based processing in 
containerized environment.

• Ensures accurate accounting of the time spent processing network 
traffic in softirq.

• Integrated with Linux scheduler with minimal changes.

• Novel packet dropping mechanism to limit the interference. 
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