PowerMan: An Out-of-Band Management Network for Data Centers Using Power Line Communication

Li Chen, Jiacheng Xia, Bairen Yi, Kai Chen
SING Group
Hong Kong University of Science and Technology
Managing Large Data Centers

• Data centers can contain tens of thousands of devices.

• Operations and management tasks:
 • device installation, bring-up/restart, configuration, diagnostics…
Data Center Management Requirements

- Survive failures
- Scalable
- Can be easily deployed

Fate-sharing
Data Center Management Requirements

- Survive failures
- Scalable
- Can be easily deployed
Data Center Management Requirements

- Survive failures
- Scalable
- Can be easily deployed

Flyway [Sigcomm’11]
Angora [Mobicomm’14]

3D-Beamforming [Sigcomm’12]
Firefly [Sigcomm’14]
ProjecToR [Sigcomm’16]
Diamond [NSDI’16]
Data Center Management Requirements

- Survive failures
- Scalable
- Can be easily deployed

- 3D-Beamforming [Sigcomm’12]
- Firefly [Sigcomm’14]
- ProjecToR [Sigcomm’16]
- Diamond [NSDI’16]
- Flyway [Sigcomm’11]
- Angora [Mobicomm’14]
How to Build a Robust & Scalable System?

• How hard is it?
 • Short answer: It’s hard.
 ✓ Redundancy
 ✓ Graceful degradation
 ✓ Failure isolation/localization
 ✓ Ease of repair/replacement
 ✓ …

• Whenever we build a new distributed system, we have to check all the above boxes again.

• Do we have to?

Key Insight: **Borrowing** robustness and scalability from closely-coupled systems.
Data Center Power Systems (DCPS)

Power System: The Most Robust System in Data Centers

- **Tier 1:** 99.671% Uptime
- **Tier 2:** 99.749% Uptime
- **Tier 3:** 99.982% Uptime
- **Tier 4:** 99.995% Uptime → 26 Min Annual Downtime
Data Center Power Systems (DCPS)

Redundant Power Distribution Paths

Power Sources:
- Utility, Backup generators, etc.

Side A

- Main Switch Board
- UPS
- PDU
- PDU
- PDU
- PSU
- PSU
- Server

Critical Loads

Side B

- Main Switch Board
- UPS
- PDU
- PDU
- PDU
- PSU
- PSU
- Server

Power Sources:
- Utility, Backup generators, etc.
Data Center Power Systems (DCPS)

Primary Power Path

Power Sources: Utility, Backup generators, etc.

Main Switch Board

Non-essential Loads: lighting, etc.

Static Bypass

UPS

Essential Loads: mechanical, cooling, etc.

Critical Loads

PDU

PSU

PSU

PSU

PSU

... PSU

PDU

PSU

PSU

PSU

PSU

... PSU

PDU

PSU

PSU

PSU

PSU

... PSU
PowerMan: Embedded in DCPS

Enabling Technology: Power Line Communication (PLC)

Power Sources: Utility, Backup generators, etc.

Main Switch Board

Non-essential Loads: lighting, etc.

Static Bypass

UPS

Essential Loads: mechanical, cooling, etc.

Power Man PDU

Critical Loads

PowerMan PDU

PM-PSU

PM-PSU
Outline

1. Overview of Power Line Communication (PLC)

2. Problems of Current PLC Technology & PowerMan Design
 - Wiring → PowerMan Power Supply Unit
 - Scalability → PowerMan Power Distribution Unit

3. Prototype Implementation & Evaluations
Power Line Communication (PLC)
What is PLC?

- Power lines deliver electricity to devices.
 - AC Operating frequency: 50~60Hz.

- PLC uses existing power distribution wires to transmit high frequency data signals.

- Very challenging communication environment.
 - High attenuation.
 - Multipath fading.
 - Noise.
 - ...

Image by powerethernet.com
• PLC uses existing power distribution wires.
• PLC has been in use for many decades.
 • Industrial control.
 • Energy management.
 • Remote metering (telemetering).
 • Power line maintenance.
 • …
• Data rate: A few Kbps.

Standards
- IEEE 1901, Broadband Power Line Standards.
- ITU-T G.9960 Standards.
- CENELAC Standards.
- ETSI Standards.

Protocols
- HomePlug
- CEBUS
- LonWorks
- UPA
- SiConnect
- G.gn

PHY
- ASK
- FSK
- BPSK
- **OFDM**

MAC
- Token-based
- TDMA
- FDMA
- **CSMA/CA**

HomePlug Protocols provides Ethernet networking for household scenarios, with up to 1200 Mbps data rate.
Problems of Current PLC Technology & PowerMan Design

- Wiring Complexity
 - PowerMan PSU

- Limited Scalability
 - PowerMan PDU
Problems of Current PLC Technology

- Wiring
- Scalability

Netgear Powerline 1000 (PL1000) PLC modem
- 1000Mbps PHY data rate
- US$ 30.3 per piece (via local home appliance vendors)
- 1x built-in power plug
- 1x RJ-45 port for Ethernet connection.
- Max power consumption: 3.73 Watts
- HomePlug AV protocols
- OFDM carrier frequency range: 2 MHz to 86 MHz
Problems of Current PLC Technology

- Wiring
- Scalability

2x Power Sockets → PDU size
2x Network Cables → Wiring space in rack
Problems of Current PLC Technology

- Wiring
- Scalability
Wiring: PowerMan PSU

- Reduce wiring by combining PLC modem with existing device PSU.

For New Datacenters

PSU Design 1:
Full-Integration
Wiring: PowerMan PSU

- Reduce wiring by combining PLC modem with existing device PSU.

For New Datacenters

For Existing Datacenters

PSU Design 1: Full-Integration

PSU Design 2: Bump-in-the-wire
Wiring: PowerMan PSU

…with PowerMan PSU

Power

PLC Signals

Server

PDU

ToR Switch
Problems of Current PLC Technology

- Wiring
- Scalability

Scalability of PLC networking for household use is limited.
Scalability: PowerMan PDU

• How to scale with current PLC modems?
 • Form a big network with smaller ones.
 • Prevent cross-circuit interference with Low-Pass Filter.
 • Preserve cross-circuit network connectivity with a packet-forwarding gateway.
Scalability: PowerMan PDU

- Wiring
- Scalability

PowerMan PDU retains the same cable and socket count.
• With reduced interference between PDU circuits, we can connect the PDUs using the same topology as the data center power system.

$k = 64$, $h = 3 \rightarrow 250K$ PSUs

k: # of PLC modems in the same circuit.
h: Tree height.
PowerMan leverages the redundancy in existing DCPS to achieve high robustness.
Prototype Implementation & Performance
Two-Layer PowerMan Prototype

- 5 servers in each Layer-0 rack.
- 2 gateway servers in Layer-1
• Two-Layer PowerMan Prototype

12 servers and 16 PLC modems in total: Increases default PLC network size limit by 167%
Micro-Benchmarks

Throughput (Mbps)

- 1-to-1:
 - 0 PDUs: 28.75 Mbps
 - 1 PDUs: 26.62 Mbps
 - 2 PDUs: 25.28 Mbps

- 1-to-5:
 - 0 PDUs: 21.98 Mbps
 - 1 PDUs: 19.42 Mbps
 - 2 PDUs: 17.42 Mbps

- 5-to-1:
 - 0 PDUs: 14.57 Mbps
 - 1 PDUs: 14.00 Mbps
 - 2 PDUs: 12.00 Mbps

Round Trip Time (ms)

- 1-to-1:
 - 0 PDUs: 7.7 ms
 - 1 PDUs: 10.2 ms
 - 2 PDUs: 12.1 ms

- 1-to-5:
 - 0 PDUs: 4.7 ms
 - 1 PDUs: 6.52 ms
 - 2 PDUs: 8.92 ms

- 5-to-1:
 - 0 PDUs: 2.2 ms
 - 1 PDUs: 4.7 ms
 - 2 PDUs: 7.7 ms

PDUs between src and dest
Completion Times of Management Tasks

<table>
<thead>
<tr>
<th>LAMP Server Setup</th>
<th>PowerMan (Layer-0)</th>
<th>PowerMan</th>
<th>Elec. Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMP Server Setup</td>
<td>5 min 14.7 sec</td>
<td>5 min 50.39 sec</td>
<td>4 min 33.45 sec</td>
</tr>
<tr>
<td>Config Firewall</td>
<td>20.97 sec</td>
<td>23.03 sec</td>
<td>17.91 sec</td>
</tr>
<tr>
<td>Reinstall Nginx</td>
<td>16.76 sec</td>
<td>17.65 sec</td>
<td>14.77 sec</td>
</tr>
<tr>
<td>Collect Egress Rate</td>
<td>0.04 sec</td>
<td>0.045 sec</td>
<td>0.032 sec</td>
</tr>
</tbody>
</table>
OoB Network Cost Comparisons (at 16000 Servers)

Deployment Difficulty

- Embedded in DCPS
- Reusing existing wiring
- No room/rack mods
- 60 GHz wireless
- Reflective rings/walls
- Rack dimension mods
- Free-space Optics
- Mirror on ceiling
- Room height mods

Component Cost (k$)

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost (k$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerMan</td>
<td>1218</td>
</tr>
<tr>
<td>Diamond [NSDI'16]</td>
<td>3024</td>
</tr>
<tr>
<td>Firefly [Sigcomm'14]</td>
<td>2896</td>
</tr>
<tr>
<td>3D-Beamforming [Sigcomm'12]</td>
<td>2432</td>
</tr>
<tr>
<td>FatTree [Sigcomm'08]</td>
<td>2240</td>
</tr>
</tbody>
</table>

Operating Power (kW)

<table>
<thead>
<tr>
<th>Component</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerMan</td>
<td>284</td>
</tr>
<tr>
<td>Diamond [NSDI'16]</td>
<td>3428</td>
</tr>
<tr>
<td>Firefly [Sigcomm'14]</td>
<td>4281</td>
</tr>
<tr>
<td>3D-Beamforming [Sigcomm'12]</td>
<td>3486</td>
</tr>
<tr>
<td>FatTree [Sigcomm'08]</td>
<td>3486</td>
</tr>
</tbody>
</table>

60 GHz wireless
Mirror on ceiling
Room height mods
• PowerMan is a robust, scalable, and easy-to-deploy management network for data centers.
 • Provides necessary bandwidth/latency for many management tasks.
 • Suitable as a **back-up/last-resort** network that can be constructed with ease and low cost.

• PowerMan employs PLC technology to **borrow** robustness and scalability from existing power systems.

• We redesign PSU and PDU to construct PowerMan with house-hold PLC devices.