LHD: Improving Cache Hit Rate by Maximizing Hit Density

Authors:
- Nathan Beckmann, CMU
- Haoxian Chen, U. Penn
- Asaf Cidon, Stanford & Barracuda Networks

Conference: USENIX NSDI 2018
Key-value cache is 100X faster than database
Key-value cache hit rate determines web application performance

• At 98% cache hit rate:
 • +1% hit rate \rightarrow 35% speedup
 • Old latency: 374 μs
 • New latency: 278 μs
 • Facebook study [Atikoglu, Sigmetrics ‘12]
• Even small hit rate improvements cause significant speedup
Choosing the right eviction policy is hard

- Key-value caches have unique challenges
 - Variable object sizes
 - Variable workloads

- Prior policies are heuristics that combine recency and frequency
 - No theoretical foundation
 - Require hand-tuning → fragile to workload changes

- No policy works for all workloads
 - Prior system simulates many cache policy configurations to find right one per workload [Waldspurger, ATC ‘17]
GOAL:
AUTO-TUNING EVICTION POLICY ACROSS WORKLOADS
The “big picture” of key-value caching

- **Goal**: Maximize cache hit rate
- **Constraint**: Limited cache space
- **Uncertainty**: In practice, don’t know what is accessed when
- **Difficulty**: Objects have variable sizes
Where does cache space go?

- Let’s see what happens on a short trace…
Where does cache space go?

- Green box = 1 hit
- Red box = 0 hits
- Want to fit as many green boxes as possible
- Each box costs resources = area
- Cost proportional to size & time spent in cache
THE KEY IDEA: HIT DENSITY
Our metric: Hit density (HD)

- Hit density combines hit probability and expected cost

\[
\text{Hit density} = \frac{\text{Object's hit probability}}{\text{Object's size} \times \text{Object's expected lifetime}}
\]

- Least hit density (LHD) policy: Evict object with smallest hit density
- But how do we predict these quantities?
Estimating hit density (HD)

- Age – # accesses since object was last requested
- Random variables
 - H – hit age (e.g., $P[H = 100]$ is probability an object hits after 100 accesses)
 - L – lifetime (e.g., $P[L = 100]$ is probability an object hits or is evicted after 100 accesses)

- Easy to estimate HD from these quantities:
 \[
 HD = \frac{\sum_{a=1}^{\infty} P[H = a]}{Size \times \sum_{a=1}^{\infty} a P[L = a]}
 \]
Example: Estimating HD from object age

• Estimate HD using **conditional probability**

• Monitor distribution of H & L online

• By definition, object of age a wasn’t requested at age $\leq a$

• \Rightarrow Ignore all events before a

- Hit probability $= P[\text{hit} \mid \text{age } a] = \frac{\sum_{x=a}^{\infty} P[H=x]}{\sum_{x=a}^{\infty} P[L=x]}$

- Expected remaining lifetime $= E[L - a \mid \text{age } a] = \frac{\sum_{x=a}^{\infty} (x-a) P[L=x]}{\sum_{x=a}^{\infty} P[L=x]}$
Users ask repeatedly for common objects and some user-specific objects.

Best hand-tuned policy for this app:
Cache common media + as much user-specific as fits
Probability of referencing object again

- Common object modeled as scan, user-specific object modeled as Zipf
LHD by example: what’s the hit density?

Hit density large & *increasing*
Hit density small & *decreasing*

- **High hit probability**
 - Older objects closer to peak expected lifetime decreases with age
 - Older objects are probably unpopular
 - Expected lifetime increases with age

- **Low hit probability**

Reference Probability
Age (accesses since reference)
LHD by example: policy summary

LHD automatically implements the best hand-tuned policy:
First, protect the common media, then cache most popular user content.
Improving LHD using additional object features

- Conditional probability lets us easily add information!

- Condition H & L upon additional informative object features, e.g.,
 - *Which app requested this object?*
 - *How long has this object taken to hit in the past?*

- Features inform decisions \Rightarrow LHD *learns* the “right” policy
 - No hard-coded heuristics!
LHD gets more hits than prior policies

Lower is better!
LHD gets more hits across many traces

(a) Memcached
(b) MSR src1_0
(c) MSR src1_1
(d) MSR usr_1
(e) MSR proj_1
(f) MSR proj_2
LHD needs much less space
Why does LHD do better?

- Case study vs. AdaptSize [Berger et al, NSDI’17]
 - AdaptSize improves LRU by bypassing most large objects

LHD admits all objects \(\Rightarrow\) more hits from big objects

LHD evicts big objects quickly \(\Rightarrow\) small objects survive longer \(\Rightarrow\) more hits
RANKCACHE: TRANSLATING THEORY TO PRACTICE
The problem

- Prior complex policies require complex data structures
- Synchronization → poor scalability → unacceptable request throughput

- Policies like GDSF require $O(\log N)$ heaps
- Even $O(1)$ LRU is sometimes too slow because of synchronization
- Many key-value systems approximate LRU with CLOCK / FIFO
 - MemC3 [Fan, NSDI ’13], MICA [Lim, NSDI ’14]...

- Can LHD achieve similar request throughput to production systems?
RankCache makes LHD fast

1. Track information approximately (eg, coarsen ages)

2. Precompute HD as table indexed by age & app id & etc

3. Randomly sample objects to find victim
 • Similar to Redis, Memshare [Cidon, ATC ‘17], [Psounis, INFOCOM ‘01],

4. Tolerate rare races in eviction policy
Making hits fast

- Metadata updated locally ➔ no global data structure
- Same scalability benefits as CLOCK, FIFO vs. LRU
Making evictions fast

• No global synchronization ➔ Great scalability!
 (Even better than CLOCK/FIFO!)

Sample objects

Miss!

Lookup hit density (pre-computed)

Evict E

Repeat if race detected
Memory management

• Many key-value caches use slab allocators (eg, memcached)

• Bounded fragmentation & fast

• ...But no global eviction policy \Rightarrow poor hit ratio

• Strategy: balance victim hit density across slab classes
 • Similar to Cliffhanger [Cidon, NSDI’16] and GD-Wheel [Li, EuroSys’15]

• Slab classes incur negligible impact on hit rate
Serial bottlenecks dominate \Rightarrow LHD best throughput

CLOCK doesn’t scale when there are even a few misses!

RankCache scales well with or without misses!

Optimization we don’t have time to talk about!

GDSF & LRU don’t scale!

(a) 90% Hit ratio.

(b) 100% Hit ratio.
Related Work

• Using conditional probabilities for eviction policies in CPU caches
 • EVA [Beckmann, HPCA ‘16, ‘17]
 • Fixed object sizes
 • Different ranking function

• Prior replacement policies
 • Key-value: Hyperbolic [Blankstein, ATC ‘17], Simulations [Waldspurger, ATC ‘17], AdaptSize [Berger, NSDI ‘17], Cliffhanger [Cidon, NSDI ‘16]...
 • Non key-value: ARC [Megiddo, FAST ’03], SLRU [Karedla, Computer ‘94], LRU-K [O’Neil, Sigmod ‘93]...
 • Heuristic based
 • Require tuning or simulation
Future directions

• Dynamic latency / bandwidth optimization
 • Smoothly and dynamically switch between optimized hit ratio and byte-hit ratio

• Optimizing end-to-end response latency
 • App touches multiple objects per request
 • One such object evicted ➔ others should be evicted too

• Modeling cost, e.g., to maximize write endurance in FLASH / NVM
 • Predict which objects are worth writing to 2nd tier storage from memory
THANK YOU!