RAIL: A Case for Redundant Arrays of Inexpensive Links in Data Center Networks

Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Xuan Kelvin Zou, Hang Guan, Arvind Krishnamurthy, Thomas Anderson

Optical Links are Expensive

Transceiver

In this talk...

- First large-scale measurement of optical links in DCN
 - Significant over-engineering in optics
- Reduce over-engineering by using transceivers beyond design reach limit
 - Cost saving up to 40% of DCN
- Challenge: Packet loss on a small fraction of links
 - RAIL protects loss sensitive applications from this packet loss

Signal Strength and Bit Error Rate

Transceiver Classification

→ 10G-SR

→ 300m

\$45

10G-LR 10km \$111 40G-SR4 100m \$165 40G-LR4 10km \$1249

SR 300m multi-mode 10G rate SFP+ 850nm

\$45.00

LR 10Km single-mode 10G rate SFP+ 1310nm

\$111.00

SR4 100m multi-mode 40G rate QSFP+ MPO connector 850nm

\$165.00

LR4 10Km single-mode 40G rate QSFP+ LC connector CWDM

\$1,249.00

[Image from robofiber]

Transceiver Classification

10G-SR 300m

\$45

<

10G-LR 10km \$111 40G-SR4 100m \$165 40G-LR4 10km \$1249

SR 300m multi-mode 10G rate SFP+ 850nm

\$45.00

LR 10Km single-mode 10G rate SFP+ 1310nm

\$111.00

SR4 100m multi-mode 40G rate QSFP+ MPO connector 850nm

\$165.00

LR4 10Km single-mode 40G rate QSFP+ LC connector CWDM

\$1,249.00

[Image from robofiber]

Over-engineering in Optics

300K links 10G-SR

Pervasive across: technology types (10G, 40G, 100G), 20 data centers, 5 major transceiver manufacturers, 10 months

Why so much over-engineering?

- Ensure every link is reliable under worst-case assumption
 - Fiber quality
 - Connector loss
 - Dispersion
- Derive reach limit based on worst-case assumption

How to reduce over-engineering?

Use Transceivers beyond Design Reach Limit

Use Transceivers beyond Design Reach Limit

Use Transceivers beyond Design Reach Limit

Reducing DCN Cost

Quantifying Stretch Limit

- Concatenate short fibers to emulate a long fiber.
- Use optical attenuator to emulate dirty on optical connectors.
- Test packet error rate and convert it to biterror rate (BER).
- Modeling effect of stretching on BER.

Modeling Network Cost

- 3-stage Clos network (512 ToRs, 512 Aggs, 256 Cores)
- Uniform link length distribution (max length = 10m 2 km)
 - Pick cheapest optical technology for each link
- Calculate the total DCN cost by summing up:
 - Fiber cost
 - Transceiver cost
 - Switch cost
 - Energy cost

100m 40G-SR4 10km 40G-LR4

100m 40G-SR4 10km 40G-LR4

Low (99% Good Paths)

-High (95% Good Paths)

100m 40G-SR4 10km 40G-LR4

Low (99% Good Paths)

-High (95% Good Paths)

100m 40G-SR4 10km 40G-LR4

0-500m, 40G

How to protect loss-sensitive applications from a small number of low loss links?

Possible Solutions

- Strawman: Source-routing
 - Source server picks a path that meets application requirement
 - Hard to scale
- Strawman: Error-correction code
 - Need to encode with per-path error rate to avoid bandwidth overhead
 - Latency of error correction for short flows

RAIL's Approach

- Virtual Topology
 - Ensures a maximum end-to-end path packet error rate
 - Higher class virtual topology has higher loss rate
 - Applications choose virtual topology
- Error correction for higher class
 - Route with error-correction appropriate for path

Virtual Topologies

0% link loss rate

0.1% link loss rate

Support Unmodified Applications

- Server exposes multiple virtual NICs where each virtual NIC corresponds to a path loss rate guarantee
- Applications simply choose a virtual NIC to bind
 - Flow is transparently error-encoded when traversing high loss path
 - Loss rate is queried from centralized controller

Testbed Experiments

- 3-stage Clos network (4 ToRs, 4 Aggs, 2 Cores)
 - 10G-SR optical technology
 - TCP CUBIC on Linux 3.19
- Use an optical attenuator to degrade the quality of a single link
- Two virtual topologies
 - Virtual topology #1: Without the degraded link
 - Virtual topology #2: With the degraded link

Evaluation Methodology

- Comparison
 - No RAIL
 - RAIL
 - RAIL w/o EC, use virtual topology #1 to protect flows less than 1MB
- Compute flow completion time normalized by performance on nondegraded network; Flow length distribution from pFabric.
 - Binned by flow sizes

Evaluations

Summary

- Room for cost saving in optics used in DCN
- Reducing over-engineering
 - Stretching design reach limit for optical links can save up to 40%
- RAIL protects loss sensitive applications from packet loss due to reduction in overengineering.

