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Advantages of Graph Engine
Simple programming model (e.g. GAS)

PageRank, Shortest path, etc.

Application

o —@ 410”
Graph-aware optimization *&% o‘ (-

- Data layout [Grace(ATC'12), Naiad(SOSP'13)]
~ Partitioning [PowerLyra(EuroSys'15)]

PageRank = Shortest path

Scalability to trillion-edge

- GraM (SoCC'15)
- Chaos (SOSP'15) ‘
- One Trillion Edges (VLDB’1 5) Framework PowerGraph/PowerlLyra

*GAS figure from Powerlyra slides



Gaps for ML on Graph Engine

1. Heterogeneous vertices

PageRank Matrix Factorization(MF)
for WebPage Ranking for Recommendation



Gaps for ML on Graph Engine
2. Mini-Batch

\
PageRank Matrix Factorization(MF)
for WebPage Ranking for Recommendation
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We propose: TuX?

Bridge Graph and ML research in one system

Extend for distributed machine learning

- Scheduling: Stale Synchronous Parallel (SSP) based scheduling
- DataModel: Heterogeneous data model
- Programming: MEGA (Mini-batch, Exchange, GlobalSync, and Apply) graph model

Outperform both Graph and ML systems on ML algorithms

10x _/ vs. PowerGraph/Powerlyra
- Mainly due to MEGA model and heterogeneity optimization

- 48% / vs. Petuum/Parameter-Server(P-S)
- Mainly due to graph-based optimization



System Architecture

Overview

Partition O Partition n
Server role
T T iaster vertices | Vertex-cut a pproach
@@ OO0 - Effective for power-law graph
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' J'Yertex array y | T Mirror vertices | - Master vertices as the global state
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Key designs
Scheduling: Stale Synchronous Parallel (SSP) based
scheduling

DataModel: Heterogeneous data model

Programming: MEGA graph model



Stale Synchronous Parallel in TuX?

Slack of 1 clock as an example
~ All servers finish clock

0 ! 2 3clock
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Stale Synchronous Parallel in TuX?

Slack of 1 clock as an example

- Slowest server (n) is in clock?2

- Fastest server (0) finishes clock?2 0 3
v clock
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Stale Synchronous Parallel in TuX?

Slack of 1 clock as an example

- Slowest server (n) is in clock?2
- Fastest server (0) finishes clock?2 0
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Stale Synchronous Parallel in TuX?

Slack of 1 clock as an example

- Slowest server (n) is in clock?2
- Fastest server (0) finishes clock3

" reaching the max slack bound —=====1
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Key designs
Scheduling: Stale Synchronous Parallel (SSP) based
scheduling

DataModel: Heterogeneous data model

Programming: MEGA graph model



Heterogeneity iIn ML

Heterogeneous Vertices Feature
- Different properties
- E.g. Logistic Regression /. I.
- Sample: Label; Feature: Weight, Gradient Sample
Benefit

- Heterogeneity for compact data structure

- Heterogeneity for efficient execution

- Heterogeneity for less network traffic



Heterogeneity for compact data structure

£.g. Logistic Regression

Sample: Label; Feature: Weight, Gradient

Feature
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Heterogeneity tor efficient execution

E.g. Mini-Batch MF for recommendation

Benefits of scanning items
Sequential access for locality when syncing
Less overhead tracing the updated vertices

Server role Server role

. Updated item
vertices in a M-B
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Key designs
Scheduling: Stale Synchronous Parallel (SSP) based
scheduling

DataModel: Heterogeneous data model

Programming: MEGA graph model



MEGA: e.qg. Mini-batch MF for recommendahon

Graph View

Model: = ITU

.{ Apply(ver, accum,

| context)

verdata +=accum;

. Exchange(v_user, v_item, edge,
| a_user, a_item, context)

I (a_user, a_item)+=Gradient(loss, :
L v_user, V_item); !

— e o o o o e e e o o e o



Examp‘e M”"H—batch MF Partition 0 Partition n

Server role

Compose stage
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! StageSequenceBuilder(ExecStages)

mbStage = new MiniBatchStage();
GlobalSync mbStage.SetBatchSize(100, asEdge);
lteration Stage Mini-batch Stage

| mbStage.Add(ExchangeStage);

mbStage. Add(ApplyStage);
ExecStages.Add(mbStage);
ExecStages.Add(GlobalSyncStage);




Experiment setup

Machine information
- 16 CPU cores, 256GB memory, 54Gbps InfiniBand NIC

Typical ML algorithms
" MF, LDA, BlockPG

Large-scale dataset
Up to 64 billion edges graph

# of users/ # of items/
Dataset name docs/samples | words/features | # of edges

NewsData(LDA) 7.3M 418.4K 1.4B
AdsData(BlockPG) 924.8M 209.3M 64.9B
Netflix(MF) 480.2K 17.8K 100.5M

Synthesized(MF) 30M ™ 6.3M



Fvaluation

Compare to Parameter Server

48% improvement on 32 servers!
Algorithm: BlockPG

Dataset: Microsoft private AdsData (64B edges)
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Fvaluation

Compare to PowerGraph, Powerlyra

- Algorithm: Matrix Factorization
- Dataset: Netflix

—e—PowerGraph -e=Powerlyra =—e=TuX2
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Fvaluation

Compare to PowerGraph, Powerlyra

- Algorithm: Matrix Factorization
- Dataset: Netflix

—e—PowerGraph -e=Powerlyra =—e=TuX2
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Conclusion

TuX?: advocates the convergence of graph computation and
distributed machine learning

~ Introduce important machine learning concepts to graph computation
- Define a new, flexible graph model to express ML algorithms efficiently

- Demonstrate TuX? outperform existing Graph and ML systems in representative ML
algorithms respectively
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