
© 2016 VMware Inc. All rights reserved.© 2016 VMware Inc. All rights reserved.

vCorfu
A Cloud-Scale Object Store on a Shared Log
Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham, Maithem Munshed, Medhavi Dhawan, Jim Stabile,
Udi Wieder, Scott Fritchie, Steven Swanson, Michael J. Freedman, Dahlia Malkhi

Michael Wei
NSDI 2017
March 27th, 2017

Background
Shared Logs and Consistency

Scalability and Consistency

Systems which are
scalable…

3

yet consistent… can be difficult to build

1 + 1 = 2
1 + 1 = 2
1 + 1 = 2
1 + 1 = ?

Shared Log Systems

Shared log systems
represent a point in the
design space…

4

which provides scalability
without compromising
consistency…

however, these systems
make a different set of
tradeoffs

Sc
al

ab
ilit

y
Consistency

Sc
al

ab
ilit

y

Consistency

Writing vs Reading

While writing to a shared
log provides strong
consistency and >1/2M
appends/s,

5

To provide the strongest
level of consistency, only
updates are logged,

So reads are more
expensive, as clients now
have to read multiple
updates

1 2 3 4 5 …

.5M ops/s

1 2 3 4 5 …

increment

1 2 3 4 5 …

increment

increment
increment

Improving Read Scalability

Clients may read
unnecessary updates to
service requests

6

There is no locality, so
clients will have to jump
around on the log

Clients have to do more
work to figure out the
results of a transaction

1 2 3 4 5 …

A++
B++

B=?
1 2 3 4 5 …

1 2 3 4 5 …

B++
Read A@1

vCorfu addresses read scalability by…

Stream materialization,
which localizes related
updates and enables
reads without playback

7

Composable SMR,
which enables large state
machines without forcing
clients to replicate the
entire state machine

Lightweight Transaction
Resolution,
which eliminates the need
for clients to determine
whether transactions in a
log were aborted

1 2 3 4 5 …

1 3 …
2 4 …

A - M

N - Z

1 2 3 4 5 …

B++

A@2
A@1

A@2

vCorfu Offers Another Point in the Design Space

Different point in the
design space

8

Better read scalability, but
at a penalty to writes

We can now service more
clients without consuming
the entire log

W
rit

e
Sc

al
ab

ilit
y

Consistency

Commit

1 2 3 4 5 …

…and we will show

That we can now scale
shared log systems to
cloud-scale data sets

9

Offer comparable
performance to, and often
outperform state-of-the-art
NoSQL systems

While retaining the strong
consistency benefits of a
shared log

1 2 3 4 5 …

Shared Log Systems
Interface and Approach

Shared Log [1] Basic Operations

Read(address):
Read an entry from the log

11

Append(entry):
Append an entry to the log and return the
address it was written at

4 6

[1] CORFU: A Shared Log Design for Flash Clusters. (NSDI '12)

Shared Log Systems are Composed of…

Sequencer,
which issues addresses in
a log

12

Log replicas,
which store data in the log

Layout,
which maps addresses in
the log to log replicas

0 1 2
A B ?

0 1 2
A B ?

Log Tail
10

To Append to a Shared Log, Clients…

First contact the
sequencer, which issues
an address

13

Using the layout,
determine which log
replicas to write to

Perform a write using the
address given by the
sequencer

Log Tail
2 → 3

Next? 2

2

We Take the Tango [2] Approach…

Clients don’t interact with
the log directly, rather, they
interact with objects

14

Objects are stored in
virtualized logs called
streams

Entries in the stream
represent updates to the
object state

0 ++
--

++--

[2] Tango: Distributed Data Structures over a Shared Log. (SOSP ’13)

Including Support For Transactions…

The system leverages the
log to provide rich support
for transactions

15

Transactions execute
optimistically on the
client’s in-memory views

And the log serves as the
ground truth in case of
conflicts

if (A==1)
{

A++;
B++;

}

vCorfu Stream Store
Architecture and Design

Materialized Streams

In vCorfu, a fundamental
building block is a
materialized stream

17

Stream replicas implement
the storage for a
materialized stream

The vCorfu sequencer
keeps track of the global
tail as well as stream tails
(global, stream)

◆0 ◆1 ◆2
Z ? ?

▲0 ▲1 ▲2
X Y ?

Log Tail
2

▲: G0/0
◆: G2/1

Gx (Global Address)
/y (Stream Address)

▲

◆

Materializing Streams

Sequencer issues global
address (2) and stream
address (▲1)

18

Write to log replica using
the global address (2)

Write to stream replica
using the stream ID (▲)
and stream address (1)

▲0 ▲1 ▲2
✓

▲

Log Tail
1 → 2

▲: 0 → 1
◆: 0

Next, ▲? 2, ▲1
0 2
✓

Log Replica Stream Replica

Materializing Streams

Client must commit data to
every log and stream
replica

19

Log replicas and stream
replicas only serve
committed data

Extra commit message
reduces append
throughput

0

20

40

60

80

100

2 4 8

K
 A

pp
en

ds
/s

Total Replicas

Materialized Stream
Stream

Reading From a Materialized Stream

Stream replicas contain all
updates for a given stream

20

This enables reading a
stream by contacting only
one replica

Not having to jump from
replica to replica greatly
improves read performance

0
20
40
60
80

100
120
140
160
180

10 100 200

M
ill

is
ec

on
ds

of Entries in Stream

Materialized Stream
Stream0 2

◆0 ▲1
1 3

▲0 ◆1

▲0 ▲1 ▲2
▲0 ▲1▲

Local / Remote Views

Local views enable clients to
obtain in-memory objects by
following updates

21

Remote views enable to delegate
playback to stream replicas

Remote views keep latency
constant with a heavily modified
object and many clients reading

++++

2

◆0 ◆1 ◆2
++ ++◆

2

0
20
40
60
80

100
120
140

1 2 4 8

La
te

nc
y

(m
s)

of Clients Reading

Local
Remote

Transactional Execution

We support optimistic
transaction execution based on
versioned object views

22

The client tracks the
version of each object it
accesses

And generates a list of
modifications it will make

if (▲==1)
{
◆++;

}
V0

V1

V1
Read Set

++
Write Set

V0

V1

Lightweight Transaction Resolution

Send sequencer version of read
and write set, address issued if
read set versions are equal

23

And a client encountering
this entry does not need to
determine the read set

Read
G2 1

Log Tail
1

▲: G1/0
◆: G0/0

V1
Write

This enables only the write set to
be written, since we know that the
read set will not have changed

◆0 ◆1 ◆2
++ ++◆

◆0 ◆1 ◆2
++ ++◆

Large State Machines

Objects can contain large
amounts of state, which pose a
difficulty for SMR

24

They pose a burden for a
client, which has to play all
these updates in memory

They pose a burden on the log
because they contain many
updates

◆0 ◆1 ◆2
++ ++ ++◆ ++++

CSMR: Composing vCorfu Objects

vCorfu objects can
be composed of
other vCorfu objects
with a pointer

25

Reduces playback
burden by naturally
dividing objects

Leverages transactional
features of vCorfu

A - L

L - Z
TX

CSMR Example: Map

Instead of a single
map, compose a
map from multiple
buckets

26

Most operations only
need to access a
single bucket

Certain operations, like
clear() or size() are more
expensive with CSMR

A - G

H - L

M - Z

map
A - G

get(“apple”)
A - G

H - L

M - Z

size

vCorfu vs. Cassandra YCSB

27

Conclusion
vCorfu Benefits

vCorfu addresses the read burden by…

Stream materialization,
which localizes related
updates and enables
reads without playback

29

Composable SMR,
which enables large state
machines without forcing
clients to replicate the
entire state machine

Lightweight Transaction
Resolution,
which eliminates the need
for clients to determine
whether transactions in a
log were aborted

1 2 3 4 5 …

1 3 …
2 4 …

A - M

N - Z

1 2 3 4 5 …

B++

A@2
A@1

A@2

Special thanks to the Corfu Team:
Past and Present

Original Corfu Paper
Mahesh Balakrishnan
Dahlia Malkhi
Vijayan Prabhakaran
Ted Wobber
John D. Davis

Tango
Ming Wu
Sriram Rao
Tao Zou
Aviad Zuck

Replex
Amy Tai
Michael J. Freedman
Ittai Abraham

30

VMware NSX
Maithem Munshed
Zeeshan Lokhandwala
Medhavi Dhawan
Jim Stabile
Kapil Goyal
Guprit Johal
Konstain Spriov
James Chang
Jim Yang
Kevin James
Anny Manzanil
Ragnar Edholm

vCorfu
Christopher J. Rossbach
Udi Wieder
Scott Fritchie

Corfu is Available on GitHub

github.com/CorfuDB/CorfuDB

CONFIDENTIAL 31

fin
Questions?

We Take the Tango [1] Approach…

Where clients interact with objects, and a runtime manages interactions with the log. Each object is
contained within a stream, which is the set of updates for that object.

33

Log Tail
-1

A: -1
B: -1

Counter A
0

Get

Increment

Counter B
0

[1] Tango: Distributed Data Structures over a Shared Log. Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran,
Michael Wei, John D. Davis, Sriram Rao, Tao Zou, Aviad Zuck. SOSP 2013: The 24th ACM Symposium on Operating Systems Principles.

Example: Incrementing a Counter

When the client increments the counter, the runtime asks the sequencer for the next address for the stream
of the given counter

34

Log Tail
-1

A: -1
B: -1

Counter A
0

Increment

Counter B
0

Next, A?

Example: Incrementing a Counter

And the runtime can now write a increment record to the log replica, writing the previous stream address
given in the record, known as a backpointer.

35

Log Tail
0

A: 0
B: -1

Counter A
0

Increment

Counter B
0

Next, A?

Global: 0, A:-1

A:-1
A++

Example: Incrementing a Counter

And the runtime can now write a increment record to the log replica, writing the previous stream address
given in the record, known as a backpointer.

36

Log Tail
1

A: 1
B: -1

Counter A
0

Increment

Counter B
0

Next, A?

Global: 1, A:0

A:-1
A++

A:0
A++

Example: Incrementing a Counter

And the runtime can now write a increment record to the log replica, writing the previous stream address
given in the record, known as a backpointer.

37

Log Tail
2

A: 1
B: 2

Counter A
0

Counter B
0

Next, B?

Global: 2, B:-1

A:-1
A++

A:0
A++

B:-1
B++

Example: Reading a Counter

To read, the runtime contacts the sequencer for the latest address issued to stream A.
The client then reads all the updates, traversing the backpointers.

38

Log Tail
2

A: 1
B: 2

Counter A
0

Counter B
0

Last, A?

A: 1

A:-1
A++

A:0
A++

B:-1
B++

Get

0: ?
1: A++

Example: Reading a Counter

The runtime keeps all the updates in memory until the entire stream has been read.

39

Log Tail
2

A: 1
B: 2

Counter A
0

Counter B
0

Last, A?

A: 1

A:-1
A++

A:0
A++

B:-1
B++

Get

0: A++
1: A++

Example: Reading a Counter

Once the entire stream is read, the runtime applies the updates and returns the new value of the counter to
the client.

40

Log Tail
2

A: 1
B: 2

Counter A
2

Counter B
0

Last, A?

A: 1

A:-1
A++

A:0
A++

B:-1
B++

Get

0: A++
1: A++

Example: Holes

Holes due to failed clients can be a problem – they contain no information about backpointers,
and require a linear scan if encountered.

41

Log Tail
3

A: 3
B: 2

Counter A
2

Counter B
0

A:-1
A++

A:0
A++

B:-1
B++

Example: Incrementing Multiple Counters

A multi-put is implemented by generating a single entry which is part of both streams.

42

Log Tail
0

A: 0
B: 0

Counter A
0

Increment

Counter B
0

Next, A,B?

Global: 0, A:-1, B:-1 Increment

A:-1, A++

B:-1, B++

Example: Incrementing Multiple Counters... Conditionally

To increment multiple counters conditionally, a transaction is created.
The runtime keeps track of the read set (address or version of read objects) and the write set.
At commit time, an entry with the read set and write set is written.

43

Log Tail
1

A: 0
B: 1

Counter A
1

Counter B
0

Next, B?

Global: 1 B:0

A:-1, A++

B:-1, B++ B: 0
A@0?
B++

if (A==1)
{

B++;
}

vCorfu Stream Store
Materializing Streams

Introducing a New Component: The Stream Replica

In vCorfu, we add an additional component, a stream replica, which stores data indexed not on the log
address, but a combination of the stream ID and the address in the stream.

45

0 1 2
X Y ?

Log Replica Stream Replica

B0 B1 B2
Z ? ?

A0 A1 A2
X Y ?A

B

Modifying an Existing Component:
Sequencer now tracks Stream Addresses

We also make a modification to the sequencer so it tracks the stream addresses used as an index for the
stream replicas. This is a small counter with a small amount of state.

46

Streaming Sequencer

Log Tail
2

A: G0/0
B: G2/2

Gx (Global Address) /y (Stream Address)

Corfu / Tango Replica Sets

In Corfu/Tango, the log is striped across replica sets, as described by the layout,
and each replica set is replicated via chain replication.

47

Log Tail
-1

A: -1
B: -1

Counter A
0

Counter B
0

Replica Set
Layout

Materialized Streams

In vCorfu, the layout also maps each stream to a stream replica,
which serve materialized views of each stream.

48

Log Tail
-1

A: G-1/-1
B: G-1/-1

Counter A
0

Counter B
0

Layout

Example: Incrementing a Counter

To append to stream A, we now obtain a global address,
backpointer and stream address from the sequencer

49

Log Tail
0

A: G0/0
B: G-1/-1

Counter A
0

Counter B
0

Increment
Next, A?

Global: 0, A:G-1,0

Example: Incrementing a Counter

Using the global (log) address, we write to the log replica

50

Log Tail
0

A: G0/0
B: G-1/-1

Counter A
0

Counter B
0

Increment
Next, A?

Global: 0, A:G-1,0

A:-1
A++

Example: Incrementing a Counter

Then using the stream address, we write to the stream replica.
Since this is the last write we will perform, we also indicate that it is okay to commit this write.

51

Log Tail
0

A: G0/0
B: G-1/-1

Counter A
0

Counter B
0

Increment
Next, A?

Global: 0, A:G-1,0

A:-1
A++

A++

Example: Incrementing a Counter

We then broadcast commit to any replicas we have written to. Replicas only serve committed data.

52

Log Tail
0

A: G0/0
B: G-1/-1

Counter A
0

Counter B
0

Increment
Next, A?

Global: 0, A:-1

A:-1
A++

A++

Example: Incrementing a Counter

As a result, each stream replica holds only the updates for each stream,
which we refer to as a materialized stream when a stream replica is available.

53

Log Tail
1

A: G0/0
B: G1/0

Counter A
0

Counter B
0

A:-1
A++

A++ B++

B:-1
B++

Increment

Dynamic Replica Sets

In vCorfu, replica sets are no longer static. Instead, we dynamically generate replica sets based on two
indexes, the log address and the stream id plus stream address.

54

Log Tail
1

A: G0/0
B: G1/0

Counter A
0

Counter B
0

A:-1
A++

A++ B++

B:-1
B++

Increment

Replica Set Replica Set

Dynamic Replica Sets

So that in this example, three different replica sets are constructed, instead of the static chain replication
protocol in Corfu/Tango.

55

Log Tail
1

A: G0/0
B: G1/0

Counter A
0

Counter B
0

A:-1
A++

A++ B++

B:-1
B++

Increment

Replica Set Replica Set Replica Set

B:1
B++

Example: Reading a Counter

With materialized streams, reading is greatly simplified. Now instead of reading backpointers in sequence,
we can read an entire stream with one request.

56

Log Tail
2

A: G0/0
B: G2/1

Counter A
0

Counter B
0

A:-1
A++

A++ B++

B:-1
B++

B++

B:1
B++

Get

Example: Reading a Counter

Now we can easily update counter B without contacting multiple replicas.

57

Log Tail
2

A: G0/0
B: G2/1

Counter A
0

Counter B
2

A:-1
A++

A++ B++

B:-1
B++

B++

B:1
B++

Get

Remote Views and Local Views

Having a single replica hold all the updates for a stream allows us to delegate playback to that replica.

58

Log Tail
2

A: G0/0
B: G2/1

Counter A
0

Counter B
2

A:-1
A++

A++ B++

B:-1
B++

B++

B:1
B++

Counter B
2

Local View

Remote View

Example: Reading a Counter with a Remote View

With a remote view, the client doesn’t need to have the updates or the state machine in memory.

59

Log Tail
2

A: G0/0
B: G2/1

Counter A
0

Counter B
2

A:-1
A++

A++ B++

B:-1
B++

B++

B:1
B++

Counter B
2

Local View

Remote View

Get

Modifying an Existing Component:
Lightweight Transaction Resolution

By adding conditional address issuance, the sequencer can perform transaction resolution.

60

Stream Sequencer w/ Lightweight
Transaction Resolution

Log Tail
2

A: G0/0
B: G2/1

Log Tail
2

A: G0/0
B: G2/1

Current, A?

A: 0
Next, A?

3, A:G0,1

Next B@2, A?

3, A:G0,1
Next B@0, A?

Reject

Example: Incrementing Multiple Counters Conditionally

The transaction in this example reads counter B and increments counter A if counter B is equal to two.

61

Log Tail
2

A: G0/0
B: G2/1

Counter A
0

Counter B
2

A:-1
A++

A++ B++

B:-1
B++

B++

B:1
B++

if (B==2)
{

A++;
}

Example: Incrementing Multiple Counters Conditionally

The client performs this transaction optimistically, and requests an address only if counter B has not
changed since the client accessed it. In this case, it has not, so the address is granted.

62

Log Tail
3

A: G3/1
B: G2/1

Counter A
0

Counter B
2

A:-1
A++

A++ B++

B:-1
B++

B++

B:1
B++

if (B==2)
{

A++;
}

Next B@2, A?

3, A:G0,1

Example: Incrementing Multiple Counters Conditionally

Now, clients can read this update directly, and a client trying to determine Counter A’s state does not need to
read counter B at all.

63

Log Tail
3

A: G3/1
B: G2/2

Counter A
0

Counter B
2

A:-1
A++

A++ B++

B:-1
B++

B++

B:1
B++

if (B==2)
{

A++;
}

Next B@2, A?

3, A:G0,1

A:0
A++

A++

Example: Incrementing Multiple Counters Conditionally

In the case that another client modifies a read object,
causing the optimistic view of counter B to become invalid…

64

Log Tail
3

A: G0/0
B: G3/2

Counter A
0

Counter B
2

A:-1
A++

A++ B++

B:-1
B++

B++

B:1
B++

if (B==2)
{

A++;
}

A:0
A++

B++

B:2
B++

Example: Incrementing Multiple Counters Conditionally

The sequencer will reject the client’s request for an address – all by doing a simple comparison (B@0 < 3).

65

Log Tail
3

A: G0/0
B: G3/2

Counter A
0

Counter B
2

A:-1
A++

A++ B++

B:-1
B++

B++

B:1
B++

if (B==2)
{

A++;
}

A:0
A++

B++

B:2
B++

Next B@0, A?

Reject

Example: Incrementing a Counter

And the sequencer responds with the current global address and previous stream addresses,
incrementing the counters for the log and the stream.

66

Log Tail
0

A: 0
B: -1

Counter A
0

Increment

Counter B
0

Next, A?

Global: 0, A:-1

