Let It Flow

Resilient Asymmetric Load Balancing with Flowlet Switching

Erico Vanini*, Rong Pan*, Mohammad Alizadeh[†], Parvin Taheri*, Tom Edsall*

Load Balancing in Data Centers

Multi-rooted tree والمرابعا تهاتها تهاتها والمرابع 1000s of server ports

- Goal: Avoid congestion
 hotspots
- Active research area
- Solved for symmetric topologies
- Still open question in asymmetric scenarios

Asymmetry Is Common in Practice

Asymmetry Is Common in Practice

Imbalanced striping: # of ports indivisible by # of switches in other tier

Zhou et al. "WCMP: Weighted cost multipathing for improved fairness in data centers," CoNEXT 2014.

Example: CONGA

- 1. Leaf switches (top-of-rack) track congestion to other leaves on different paths
- 2. Use this information to minimize bottleneck utilization

Existing Load Balancing Schemes

Congestion-aware decisions: complex

- Measure and feed back congestion in real time
- CONGA, Hedera, HULA, MPTCP, FlowBender,...

Congestion-oblivious decisions: simple

- Random, round robin, hashing decision process
- ECMP, WCMP, Packet-Spray, Presto,...

Is there a simple load balancing scheme (with congestion-oblivious decisions) that can handle asymmetry?

Simple:

Randomly assign Flowlets to available paths

"Flowlets are bursts from same flow separated by at least Δ " "the main origin of flowlets is the burstiness of TCP at RTT and sub-RTT scales."

Kandula et al, <u>"Dynamic load balancing without packet reordering"</u>, (2007)

Simple Asymmetric Scenario

Detect and randomly assign Flowlets to available paths

Link Failure

Extremely simple!

- No measurements
- No feedback
- No congestion state

What's Going On?

Force % of choices per path

Flowlets are Robust

Performance is not sensitive to load balancing decisions

Flowlet Length

Flowlets are Elastic

- Flowlets change size based on congestion on the path
- Uncongested path \rightarrow larger flowlets
- Congested path \rightarrow smaller flowlets
- → Flowlet sizes implicitly encode path congestion information

... this determines the amount of traffic on each path – not just load balancing decisions

LetFlow *is* congestion-aware, despite simple random decisions

Why Are Flowlets Elastic?

- Because of congestion control (e.g., TCP)
- A flowlet gap occurs on
- Window cuts (Loss/ECN)
- Latency spikes (ACK clocking)

 But, there's a more basic reason, applicable to any congestion control protocol ...

LetFlow Analysis

• Assume flows transmit as Poisson processes

Avg. rate of each flow:

 $\lambda_1 = C_1 / n_1$

$$\lambda_2 = C_2 / n_2$$

LetFlow Analysis

 $j \in \{1,2\}$

Takeaways

- Flows move from low rate paths (small λ) to high rate paths (large λ)
- 2. The flowlet timeout (Δ) is important
 - Shouldn't be too small or large

State transition probability $P_{n1,n2}^{j} \approx \frac{C_{j}}{2(C_{1}+C_{2})} e^{-\lambda_{j}\Delta}$

Experiments Summary

Different workloads: web search, data mining, enterprise

- Testbed experiments: ECMP, CONGA, LetFlow
 - 2 leaves 2 spines, 64 servers: symmetric & asymmetric topologies
- Simulations: ECMP, WCMP, Presto★, CONGA, LetFlow
 - Large topology: 6 leaves 6 spines, 288 servers
 - Complex asymmetric topologies: speed mismatch, combined workloads, multitier
 - Different protocols: TCP, DCTCP, DCQCN

Large Scale Simulations

LetFlow within 2X of CONGA; Both are much better than other schemes

Erico Vanini – CISCO

Multi Destination Scenario

Traffic Load uniform to the 2 destinations

Multi Destination Scenario

Other Transport Protocols

DCTCP DCQCN 5 ECMP 12 -CONGA CONGA 4.5 10 FCT (ms) FCT (ms) **L**etFlow LetFlow 4 3.5 3 2.5 2 2 40 50 60 70 40 50 60 70 Load % (w/o link failure) Load % (w/o link failure)

Conclusion

- Flowlet switching is a powerful technique for asymmetric load balancing
- LetFlow: a simple LB mechanism that handles asymmetry
 - Random decisions but implicitly congestion-aware
 - Suitable for standalone switches does not need feedback
- Letflow is stochastic and reactive in nature
 - Cannot proactively prevent congestion / queue buildup like more sophisticated schemes

LET it FLOW !