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Programmable Switching Hardware

Reconfigurable network chips that process at line rate

• Not software or FPGA based routers

• Achieve high performance using a restricted computation model e.g. RMT

Allows operators to reconfigure switches in the field

• Deploy new protocols without waiting for new hardware

• Re-allocate resources to various switch features (L2, L3 or ACLs)

Flexibility comes at a minimal hardware cost

• Commercial examples include Cavium’s XPliant, Barefoot’s Tofino



Features of Flexible Switches
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• TCAM for arbitrary wildcard matches

• SRAM for exact/LPM lookups

• Stateful memory for counter and meters

• ALUs for modifying headers and registers
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Flexible Switches are not all-powerful

Processing primitives are limited
• Cannot perform arbitrary operations

Available stateful memory is constrained
• Cannot maintain significant per-flow state

Limited number of stages and limited communication across stages
• Imposes a limit on computation performed per-packet

What can we do with these switches?
• Custom routing and tunneling protocols such as VxLAN or MPLS

• Most are packet-level transformations involving static table lookups



What about network-rich protocols?

Several protocols proposed in the past require active network elements

• Persistent and mutable state for cross-packet transformations

• Require implementing some state machine functionality

They solve a broad class of network problems

• Congestion Control (XCP, RCP, QCN, HULL)

• Load Balancing (Hedera, CONGA, WCMP, Ananta)

• Fairness & QoS Scheduling (Seawall, FairCloud, CoDel, D3)

Can we implement these amazing protocols on Flexible Switches?



Rest of the Talk

Our Approach

• Analyze protocols to determine their requirements

• Running example: RCP (Rate Control Protocol)

Building Blocks

• Propose several modules that approximate some network function

• Use approximation to overcome hardware limitations

Evaluation

• Are our approximations effective and accurate enough?



Example : RCP (Rate Control Protocol)

Congestion control scheme that relies on explicit network feedback

The original algorithm computes rate periodically using,

𝑅𝑛𝑒𝑤 = 𝑅𝑜𝑙𝑑 +
𝜶 × 𝑆𝑝𝑎𝑟𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝜷 × 𝑄𝑢𝑒𝑢𝑒𝑆𝑖𝑧𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑙𝑜𝑤𝑠
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𝑅𝑛𝑒𝑤 = 𝑅𝑜𝑙𝑑 +
𝜶 × 𝑆𝑝𝑎𝑟𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝜷 × 𝑄𝑢𝑒𝑢𝑒𝑆𝑖𝑧𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑙𝑜𝑤𝑠

1. Measure the link utilization and queue lengths

• Straight-forward, switches already have counters for this purpose

2. Perform multiplication and division

• Difficult, but can be approximated using log-table lookups

3. Estimate the number of ongoing flows

• Challenging to implement without maintaining per-flow state



Example: Cardinality Estimation

Use case: Count the number of unique flows traversing a switch

We extend an approach from streaming algorithms

1. For each packet, we hash the 5-tuple

2. Keep track of largest number of leading zeroes (say M)

3. Estimate for number of unique elements is simply 2M

pkt-1

hash(5-tuple)

0010 1101 1110 0101

pkt-2 0000 1000 1010 1100

Maximum leading zeroes:

pkt-3 0001 0111 0011 0110
Estimate = 24 = 16

. .
 .

. .
 .

24



Example: Cardinality Estimation

• The estimate is coarse-grained with high variation

• Split the input stream into multiple buckets and aggregate

• Estimate using bloom-filter counting if too few elements

Less than 5% error with 1KiB of memory for 100K flows
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More protocols and building blocks in the paper



Example: Approximate Flow Timestamps

Use case: Implement flowlet routing (e.g., CONGA, HULA)

We use a custom sketch that stores timestamps and per-flow state

For each packet, hash the 5-tuple and update cell corresponding to hashi % N

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

hash1( ) % N

hash2( ) % N

hashR( ) % N

R

N
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Flowlet routing using Approximate Flow Timestamps

Flowlet Timestamps

• Flowlet is live: if all cell timestamps are within timeout (say ΔT = 10)

• Update: Replace all cell timestamps with current time

Flowlet Route-id

• Sum of all cell routei is the desired route-id

• Update: Re-write all non-live cells such that new sum = new route-id

This method is always safe and maintains liveness of flowlets
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- - - - - - - -
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Evaluation

1. Do the approximations work on real hardware ?

• Implement RCP on Cavium XPliant switch and measure performance

2. What is the impact of approximation on protocols ?

• Compare original and approximated versions using ns3 simulations

3. How much extra resources do approximations consume ?

• Measure additional resource usage on top of a P4 switch



RCP implementation on a flexible switch

• Implemented on Cavium XPliant CNX880xx using our building blocks

• 2-level FatTree topology with 4 ToRs, 2 core switches using VLANs
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Impact of approximation on protocols

• Implement both original and approximate protocols in ns3 simulator

• Simulate a FatTree topology with 2560 servers and 112 switches
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Resource usage of approximate protocols

• Implement protocols in P4 on open-source switch.p4

• Compile to a baseline switch based on Tofino hardware model
• L2 switching, L3 routing, LAGs, ECMP, VxLAN, GRE, Geneve, etc

Resource Baseline RCP XCP CONGA

Packet Header Vector 187 191 + 2% 195 + 4% 199 + 6%

Pipeline Stages 9 10 + 11% 9 + 0% 11 + 22%

Match Crossbar 462 473 + 2% 471 + 2% 478 + 3%

Hash Bits 1050 1115 + 6% 1058 + 1% 1137 + 8%

SRAM 165 175 + 6% 172 + 4% 213 + 29%

TCAM 43 44 + 2% 45 + 5% 44 + 2%

ALU Instructions 83 88 + 6% 92 + 11% 98 + 18%



Summary

• Programmable switches can implement a broad class of protocols

• Overcome hardware constraints using approximation techniques

• Approximations are effective and accurate enough

• Demonstrate benefits on real hardware

• Simulations show protocol performance largely unaffected by approximations

• On-going work: design new protocols tailored to flexible switches


