
Evaluating the Power of Flexible Packet Processing
for Network Resource Allocation

Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson,

Changhoon Kim, Arvind Krishnamurthy, Jacob Nelson, Simon Peter

Programmable Switching Hardware

Reconfigurable network chips that process at line rate

• Not software or FPGA based routers

• Achieve high performance using a restricted computation model e.g. RMT

Allows operators to reconfigure switches in the field

• Deploy new protocols without waiting for new hardware

• Re-allocate resources to various switch features (L2, L3 or ACLs)

Flexibility comes at a minimal hardware cost

• Commercial examples include Cavium’s XPliant, Barefoot’s Tofino

Features of Flexible Switches

P
ro

gr
am

m
ab

le

Pa
rs

er

Packet
Stream . . .

TCAM

SRAM

REGs

. .
 . Egress Queues

Eth

IPv4

TCP UDP

RCP

• TCAM for arbitrary wildcard matches

• SRAM for exact/LPM lookups

• Stateful memory for counter and meters

• ALUs for modifying headers and registers

1. p = lookup(eth.dst_mac)

2. pkt.egress_port = p

3. counter [ipv4.src_ip] ++

Switch CPU

. .
 .

. .
 .

Match

Action

Flexible Switches are not all-powerful

Processing primitives are limited
• Cannot perform arbitrary operations

Available stateful memory is constrained
• Cannot maintain significant per-flow state

Limited number of stages and limited communication across stages
• Imposes a limit on computation performed per-packet

What can we do with these switches?
• Custom routing and tunneling protocols such as VxLAN or MPLS

• Most are packet-level transformations involving static table lookups

What about network-rich protocols?

Several protocols proposed in the past require active network elements

• Persistent and mutable state for cross-packet transformations

• Require implementing some state machine functionality

They solve a broad class of network problems

• Congestion Control (XCP, RCP, QCN, HULL)

• Load Balancing (Hedera, CONGA, WCMP, Ananta)

• Fairness & QoS Scheduling (Seawall, FairCloud, CoDel, D3)

Can we implement these amazing protocols on Flexible Switches?

Rest of the Talk

Our Approach

• Analyze protocols to determine their requirements

• Running example: RCP (Rate Control Protocol)

Building Blocks

• Propose several modules that approximate some network function

• Use approximation to overcome hardware limitations

Evaluation

• Are our approximations effective and accurate enough?

Example : RCP (Rate Control Protocol)

Congestion control scheme that relies on explicit network feedback

The original algorithm computes rate periodically using,

𝑅𝑛𝑒𝑤 = 𝑅𝑜𝑙𝑑 +
𝜶 × 𝑆𝑝𝑎𝑟𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝜷 × 𝑄𝑢𝑒𝑢𝑒𝑆𝑖𝑧𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑙𝑜𝑤𝑠

Ra
Rb

R = 50 R = 25 R = 20

Sender Switch A Switch B Receiver

= 25 = 20

Rate

𝑅𝑛𝑒𝑤 = 𝑅𝑜𝑙𝑑 +
𝜶 × 𝑆𝑝𝑎𝑟𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝜷 × 𝑄𝑢𝑒𝑢𝑒𝑆𝑖𝑧𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑙𝑜𝑤𝑠

1. Measure the link utilization and queue lengths

• Straight-forward, switches already have counters for this purpose

2. Perform multiplication and division

• Difficult, but can be approximated using log-table lookups

3. Estimate the number of ongoing flows

• Challenging to implement without maintaining per-flow state

Example: Cardinality Estimation

Use case: Count the number of unique flows traversing a switch

We extend an approach from streaming algorithms

1. For each packet, we hash the 5-tuple

2. Keep track of largest number of leading zeroes (say M)

3. Estimate for number of unique elements is simply 2M

pkt-1

hash(5-tuple)

0010 1101 1110 0101

pkt-2 0000 1000 1010 1100

Maximum leading zeroes:

pkt-3 0001 0111 0011 0110
Estimate = 24 = 16

. .
 .

. .
 .

24

Example: Cardinality Estimation

• The estimate is coarse-grained with high variation

• Split the input stream into multiple buckets and aggregate

• Estimate using bloom-filter counting if too few elements

Less than 5% error with 1KiB of memory for 100K flows

2M
1

2M
2

2M
n

Aggregate
across all
N buckets

More protocols and building blocks in the paper

Example: Approximate Flow Timestamps

Use case: Implement flowlet routing (e.g., CONGA, HULA)

We use a custom sketch that stores timestamps and per-flow state

For each packet, hash the 5-tuple and update cell corresponding to hashi % N

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

hash1() % N

hash2() % N

hashR() % N

R

N

pkt

Flowlet routing using Approximate Flow Timestamps

Flowlet Timestamps

• Flowlet is live: if all cell timestamps are within timeout (say ΔT = 10)

• Update: Replace all cell timestamps with current time

Flowlet Route-id

• Sum of all cell routei is the desired route-id

• Update: Re-write all non-live cells such that new sum = new route-id

This method is always safe and maintains liveness of flowlets

- - - - - - - -

- - - - - - - -

T0, 0 T0, 0 T0, 0 T0, 0 T0, 0 T0, 0 T0, 0 T0, 0

T0, 0 T0, 0 T0, 0 T0, 0 T0, 0 T0, 0 T0, 0 T0, 0

pkt-1

pkt-1

pkt-2

T = 20

T = 25

T = 29

route-id: 5

route-id: 8
T0, 0

T0, 0

Each cell stores a tuple (timestamp, routei)

ΔT = 20

ΔT = 20

T20, 0

T20, 0

2
+
3
=
5

T20, 2

T20, 3

T0, 0 ΔT = 25

ΔT = 5T20, 3T25, 3

T25, 0 5
+
3
=
8

T25, 5T29, 2

T29, 3

ΔT = 9

ΔT = 4

Evaluation

1. Do the approximations work on real hardware ?

• Implement RCP on Cavium XPliant switch and measure performance

2. What is the impact of approximation on protocols ?

• Compare original and approximated versions using ns3 simulations

3. How much extra resources do approximations consume ?

• Measure additional resource usage on top of a P4 switch

RCP implementation on a flexible switch

• Implemented on Cavium XPliant CNX880xx using our building blocks

• 2-level FatTree topology with 4 ToRs, 2 core switches using VLANs

1

10

100

1000

Short Flows Medium Flows Long Flows

Flow Completion
Time in ms

TCP RCP

Impact of approximation on protocols

• Implement both original and approximate protocols in ns3 simulator

• Simulate a FatTree topology with 2560 servers and 112 switches

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

C
D

F

Flow Completion Time for short flows in ms

RCP

XCP

TCP

RCP-Approx

XCP-Approx

Resource usage of approximate protocols

• Implement protocols in P4 on open-source switch.p4

• Compile to a baseline switch based on Tofino hardware model
• L2 switching, L3 routing, LAGs, ECMP, VxLAN, GRE, Geneve, etc

Resource Baseline RCP XCP CONGA

Packet Header Vector 187 191 + 2% 195 + 4% 199 + 6%

Pipeline Stages 9 10 + 11% 9 + 0% 11 + 22%

Match Crossbar 462 473 + 2% 471 + 2% 478 + 3%

Hash Bits 1050 1115 + 6% 1058 + 1% 1137 + 8%

SRAM 165 175 + 6% 172 + 4% 213 + 29%

TCAM 43 44 + 2% 45 + 5% 44 + 2%

ALU Instructions 83 88 + 6% 92 + 11% 98 + 18%

Summary

• Programmable switches can implement a broad class of protocols

• Overcome hardware constraints using approximation techniques

• Approximations are effective and accurate enough

• Demonstrate benefits on real hardware

• Simulations show protocol performance largely unaffected by approximations

• On-going work: design new protocols tailored to flexible switches

