Evaluating the Power of Flexible Packet Processing
for Network Resource Allocation

Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson,

Changhoon Kim, Arvind Krishnamurthy, Jacob Nelson, Simon Peter

W . Microsoft-
UNIVERSITY of BAREFCO:T Research N+ IJEMS

WASHINGTON NETWORKS

Programmable Switching Hardware

Reconfigurable network chips that process at line rate

* Not software or FPGA based routers
* Achieve high performance using a e.g. RMT

Allows operators to reconfigure switches in the field

* Deploy new protocols without waiting for new hardware
» Re-allocate resources to various switch features (L2, L3 or ACLs)

Flexibility comes at a minimal hardware cost

e Commercial examples include Cavium’s XPliant, Barefoot’s Tofino

Features of Flexible Switches

__ 1
e |2 | L EEm Vpmme e ™
4°)
s ! | .
eam gg_}l_l_} LR R
= . . . |
R I Il T I p—
N v J
¢ Switch CPU
Eth TCAM for arbitrary wildcard matches
« SRAM for exact/LPM lookups ~ Match 1. p = lookup(eth.dst_mac)
 Stateful memory for counter and meters | 2. pkt.egress_port = p

 ALUs for modifying headers and registers} Action 3. counter [ipv4.src_ip] ++

Flexible Switches are not all-powerful

Processing primitives are limited
e Cannot perform arbitrary operations

Available stateful memory is constrained
e Cannot maintain significant per-flow state

Limited number of stages and limited communication across stages

* Imposes a limit on computation performed per-packet

What can we do with these switches?
e Custom routing and tunneling protocols such as VxLAN or MPLS
* Most are involving static table lookups

What about network-rich protocols?

Several protocols proposed in the past require active network elements

e Persistent and mutable state for
* Require implementing some

They solve a broad class of network problems

* Congestion Control (XCP, RCP, QCN, HULL)
* Load Balancing (Hedera, CONGA, WCMP, Ananta)
* Fairness & QoS Scheduling (Seawall, FairCloud, CoDel, D3)

Can we implement these amazing protocols on Flexible Switches?

Rest of the Talk

Our Approach

* Analyze protocols to determine their requirements
* Running example: RCP (Rate Control Protocol)

Building Blocks

* Propose several modules that approximate some network function
* Use approximation to overcome hardware limitations

Evaluation

* Are our approximations effective and accurate enough?

Example : RCP (Rate Control Protocol)

Congestion control scheme that relies on explicit network feedback

0 @ @ [
Sender Switch A Switch B Receiver

The original algorithm computes rate periodically using,

a X SpareCapacity — X QueueSize

Rnew = Rota +
new — “old Number of Flows

a X SpareCapacity — B X QueueSize

Rnew = Rowa +
new — Told Number of Flows

1. Measure the link utilization and queue lengths

 Straight-forward, switches already have counters for this purpose

2. Perform multiplication and division

 Difficult, but can be approximated using log-table lookups

3. Estimate the number of ongoing flows

* Challenging to implement without maintaining per-flow state

Example: Cardinality Estimation

Use case: Count the number of unique flows traversing a switch

We extend an approach from streaming algorithms

pkt-1 0010 1101 1110 0101

J— . L]

Maximum leading zeroes: @

pkt-2 hash(5-tuple) 0000 1000 1010 1100

- — . 4

Estimate =27 =16

pkt-3 0001 0111 0011 0110

J—

1. For each packet, we hash the 5-tuple
2. Keep track of largest number of leading zeroes (say M)
3. Estimate for number of unique elements is simply 2M

Example: Cardinality Estimation

* The estimate is coarse-grained with high variation

-
gy — B eroveal

N buckets
-

* Split the input stream into multiple buckets and aggregate

* Estimate using bloom-filter counting if too few elements

Less than 5% error with 1KiB of memory for 100K flows

More protocols and building blocks in the paper

Functionality Protocol Building Blocks Required
_ RCP Arithmetic | Cardinality, [Metering
Congestion XCP Arithmetic, Metering
Control QCN Arithmetic, Metering
CONGA Arithmetic,l Flow Timestamps._IMeterin g
WCMP Balancing
Load Balancing | Ananta Flow Counters, Metering, Balancing
Hedera Flow Counters, Balancing
Presto Flow Statistics, Balancing
Seawall Arithmetic|Cardinality, [Metering
: FairCloud Arithmetic, Flow Counters
QoS & Fairness . . .
CoDel Arithmetic, Metering
pFabric Arithmetic, Flow Counters

Snort IDS Flow Counters Eardinality

Access Control OpenSketch | Flow Counters, Metering

Example: Approximate Flow Timestamps

Use case: Implement flowlet routing (e.g., CONGA, HULA)

We use a custom sketch that stores timestamps and per-flow state

N
hash,() % N

hash,() % N

pkt

hashe() % N

For each packet, hash the 5-tuple and update cell corresponding to hash; % N

Flowlet routing using Approximate Flow Timestamps

70,0 T0,0 TO,0 TO,0 70,0 B&T=96

+
0, 0 T0,0 TO,0 TO,0 TO,0 AT=40

route-id: 8

T=29 | pkt2] Each cell stores a tuple (timestamp, route,) 8

Flowlet Timestamps
* Flowlet is live: if all cell timestamps are within timeout (say AT = 10)
* Update: Replace all cell timestamps with current time

Flowlet Route-id
* Sum of all cell route; is the desired route-id
e Update: Re-write all non-live cells such that new sum = new route-id

This method is always safe and maintains liveness of flowlets

Evaluation

1. Do the approximations work on real hardware ?

* Implement RCP on Cavium XPliant switch and measure performance

2. What is the impact of approximation on protocols ?

 Compare original and approximated versions using ns3 simulations

3. How much extra resources do approximations consume ?

* Measure additional resource usage on top of a P4 switch

RCP implementation on a flexible switch

* Implemented on Cavium XPliant CNX880xx using our building blocks

* 2-level FatTree topology with 4 ToRs, 2 core switches using VLANSs

1000
W TCP mRCP

100

Flow Completion
Time in ms
10
1 .

Short Flows Medium Flows Long Flows

Impact of approximation on protocols

* Implement both original and approximate protocols in ns3 simulator
e Simulate a FatTree topology with 2560 servers and 112 switches

1

0.8 RCP
XCP
5" cp
~ 0.4
RCP-Approx
0.2 XCP-Approx
0
0 2 4 6 8

Flow Completion Time for short flows in ms

Resource usage of approximate protocols

* Implement protocols in P4 on open-source switch.p4

* Compile to a baseline switch based on Tofino hardware model
* L2 switching, L3 routing, LAGs, ECMP, VXLAN, GRE, Geneve, etc

Packet Header Vector 187 191 A+ 2% 195 +4% + 6%
Pipeline Stages 9 10 [+ 11% 9 +0% 11 +22%
Match Crossbar 462 473 | + 2% 471 +2% 478 +3%
Hash Bits 1050 1115 | + 6% 1058 +1% 1137 +8%
SRAM 165 175 | + 6% 172 +4% 213
TCAM 43 44 \+ 2% 45 +5% 44 +2%

LU s T s 83 88 % 6% 92 08

summary

* Programmable switches can implement a broad class of protocols
 Overcome hardware constraints using approximation techniques

* Approximations are effective and accurate enough
 Demonstrate benefits on real hardware

e Simulations show protocol performance largely unaffected by approximations

* On-going work: design new protocols tailored to flexible switches

