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Stateless vs Stateful Networks

Stateless Stateful

 Forwarding depends on rules and state.

e Packets forwarded based on static rules.
* Rules change slowly (same as before).

 Rules change slowly In response to:
e State changes at packet scales:

 Changes in topology.

 Every time a connection is established.
* Changes in policy.

 Every time packet is forwarded.




Why consider stateful networks”
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Networks are Increasingly Stateful

 Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM'12)
* Network function virtualization: Simplities NF deployment.
 Programmable switches (P4) also support state.

Not supported by most existing verification tools.



State impacts invariants
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Invariants We Consider

* This work focuses on reachability and isolation invariants.
e Can packets from host A reach host B?

o But the addition of state raises some important issues:
e |nvariants can include temporal aspects.

 Might need to consider more than just packets.
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Roadmap

Existing work on network veritication.
VMN: Our system for veritying networks with state.

Scaling verification.
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Network Verification Today

o Switches and Controllers: Static forwarding rules in switches.

HSA, Veritlow, NetKAT, Vericon, FlowlLog, etc.
e Jesting for networks with mutable datapaths

Buzz: Generate packets that are likely to trigger interesting behavior.
* Verification for networks with mutable datapaths

SymNet: Uses symbolic execution, limited state and behaviors.



VMN: Our system for veritying networks with state.

Scaling verification.



VMN: System for scalable
verification of stateful networks.
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Modeling Middleboxes

One approach: Extract model from code
Problem: At the wrong level of abstraction.
 Code written to match bit patterns in packet, etc.
* Configuration is in terms of higher level abstractions
 Example source and destination addresses, payload is infected, etc.

Verity invariants which are also expressed in these terms.
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Challenges When Modeling Middleboxes

* Example configuration:
Drop all packets from connections transmitting infected files.
 How to define infected files: large, growing set of bit patterns.

 Complexity of matching code prevents verification in even small networks.
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Modeling Middleboxes

\ Dependencies

Y See all packets in connection (flow).
Classity Packet P ( )

l Outputs
Update Classification State IS packet infected.
v f (iInfected) {
Update Forwarding State infected_connections.add(packet.flow)
j
Forwarcv Packet if (packet.flow not in infected_connections) {

y forward (packet);

}
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Sample Model

class Firewall (acls: Set[(Address, Address)])

{
abstract malicious(p: Packet): bool Oracle
val tainted: Set[Address] State

def model (p: Packet) = {
tainted.contains(p.src) => forward(Empty)
acls.contains((p.src, p.dst)) =>
forward(Empty) Forwarding
malicious(p) => tainted.add(p.src); Model

forward(Empty)
_ => forward(Seq(p))
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Network Forwarding Model

 Builds on network transfer functions.
o Existing work from HSA, Veriflow, etc.
* Abstracts all switches and routers into one big switch.

e Detalls In the paper.
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Scaling verification.
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Networks are Large

 Networks are huge In practice
e For example Google had 900K machines (approximately) in 2011
* |SPs connect large numbers of machines.

* Lots of middleboxes in these networks
e |n datacenter each machine might be one or more middlebox.

e How do we address this?
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Scaling Techniques Thus Far

e Abstract middlebox models

o Simplify what needs to be considered per-middlebox.

e Abstract network

e Simplify network forwarding.
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Ihose lechniques are not Enougn

TACAS 2016: Network verification with state is EXPSPACE-complete.
Practically for us SMT solvers timeout with large instances.

Other methods also do not handle such large instances

e Symbolic execution Is exponential in number of branches, not better.

Our technigues work for small instances, what to do about large instances”
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Scaling Verification

e [wo technigues: Slicing and symmetry.
« Slicing: Run verification on a subnetwork of size independent of network.

- Symmetry: Reduce number of invariants to verify by leveraging symmetry in policy.



Network Slices

e Slices: Subnetworks for which a bisimulation with the original network exists.
e Ensures equivalent step in subnetwork for each step in the original network

e Slices are selected depending on the invariant being checked.



Network Slices

ACME Hosting

Sylvester

D’\ Firewal )\

predator 4+ prey server

Tweety

}Q.%@@Zﬂ% s

prey < predator server
Firewall

Willie E Coyote

Road Runner




Network Slices

P\

- >
e

predator 4+ prey server

prey < predator server
Firewall
V=

Invariant: RR cannot access data from Coyote’s server

D’\ Firewal )\

}Q.%@@Zﬂ% o

ACME Hosting

Sylvester

Tweety

Willie E Coyote

Road Runner




Network Slices

ACME Hosting

P\

- >
e

Sylvester

predator s prey server Twe ety

prey < predator server —
Willie E Coyote
Firewall
V=

Road Runner
Invariant: RR cannot access data from Coyote’s server

D’\ Firewal )\

}Q.%@@Zﬂ% =

Willie E Coyote

R
|



Network Slices

predator s prey server

prey ¢ predator server CaChe <
' —

Invariant: RR cannot access data from Coyote’s server

hwh@}

ACME Hosting

Sylvester

Tweety

Willie E Coyote

Road Runner

Cache ]\

[
V4 — | Firewal ]/

Willie E Coyote




Network Slices

predator s prey server

prey ¢ predator server CaChe <
' —

Invariant: RR cannot access data from Coyote’s server

ACME Hosting

Sylvester

Tweety

Willie E Coyote

Road Runner

[ Cache ]\
.éb Firewall

INYEE Nwtﬁ@%

Willie E Coyote




Network Slices

Establishes a bisimulation between slice and network.
Allows us to prove invariants in the slice.




Cannot always find such a slice.



Finding Slices

* Flow parallel middleboxes - partition network by flows.
* Origin agnostic middleboxes - partition network by policy equivalence class.

* Detalls In paper.
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Evaluation Setup: Datacenter

o Consider AWS like multi-tenant datacenter.
 Each tenant has policies for private and public hosts.
* [hree verification tasks

e Private hosts for one tenant cannot reach another

e Public host for one tenant cannot reach private hosts for another

 Public hosts are universally reachable.
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Role of Symmetry

e Consider a private datacenter

» Use verification to prevent some bugs from a Microsoft DC (IMC 2013)
 Bugs include

* Misconfigured firewalls

 Misconfigured redundant firewalls

 Misconfigured redundant routing

 Measure time to verity as a function of number of symmetric policy groups



Veritication Time (With Symmetry)
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Conclusion

Veritying stateful networks is increasingly important.

The primary challenge Is scaling to realistic network.

Two methods to scale

 Models where oracles are separated from tforwarding behavior.

o Split the network into smaller veritiable portions is necessary.



