
Verifying Reachability for
Stateful Networks

Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, Scott Shenker
UC Berkeley, MPI-SWS, TAU, ICSI

Stateless vs Stateful Networks
Stateless

• Packets forwarded based on static rules.

• Rules change slowly in response to:

• Changes in topology.

• Changes in policy.

Stateless vs Stateful Networks
Stateless Stateful

• Packets forwarded based on static rules.

• Rules change slowly in response to:

• Changes in topology.

• Changes in policy.

• Forwarding depends on rules and state.

Stateless vs Stateful Networks
Stateless Stateful

• Packets forwarded based on static rules.

• Rules change slowly in response to:

• Changes in topology.

• Changes in policy.

• Forwarding depends on rules and state.

• Rules change slowly (same as before).

Stateless vs Stateful Networks
Stateless Stateful

• Packets forwarded based on static rules.

• Rules change slowly in response to:

• Changes in topology.

• Changes in policy.

• Forwarding depends on rules and state.

• Rules change slowly (same as before).

• State changes at packet scales:

Stateless vs Stateful Networks
Stateless Stateful

• Packets forwarded based on static rules.

• Rules change slowly in response to:

• Changes in topology.

• Changes in policy.

• Forwarding depends on rules and state.

• Rules change slowly (same as before).

• State changes at packet scales:

• Every time a connection is established.

Stateless vs Stateful Networks
Stateless Stateful

• Packets forwarded based on static rules.

• Rules change slowly in response to:

• Changes in topology.

• Changes in policy.

• Forwarding depends on rules and state.

• Rules change slowly (same as before).

• State changes at packet scales:

• Every time a connection is established.

• Every time packet is forwarded.

Why consider stateful networks?

Networks are Increasingly Stateful

• Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM’12)

Networks are Increasingly Stateful

• Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM’12)

• Network function virtualization: Simplifies NF deployment.

Networks are Increasingly Stateful

• Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM’12)

• Network function virtualization: Simplifies NF deployment.

• Programmable switches (P4) also support state.

Networks are Increasingly Stateful

• Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM’12)

• Network function virtualization: Simplifies NF deployment.

• Programmable switches (P4) also support state.

Not supported by most existing verification tools.

State impacts invariants

Invariants We Consider

• This work focuses on reachability and isolation invariants.

Invariants We Consider

• This work focuses on reachability and isolation invariants.

• Can packets from host A reach host B?

Invariants We Consider

• This work focuses on reachability and isolation invariants.

• Can packets from host A reach host B?

• But the addition of state raises some important issues:

Invariants We Consider

• This work focuses on reachability and isolation invariants.

• Can packets from host A reach host B?

• But the addition of state raises some important issues:

• Invariants can include temporal aspects.

Invariants We Consider

• This work focuses on reachability and isolation invariants.

• Can packets from host A reach host B?

• But the addition of state raises some important issues:

• Invariants can include temporal aspects.

• Might need to consider more than just packets.

Temporal Invariants

Server 0

Server 1

User 0

User 1
User 1 receives no packets from server 0

Standard Reachability

deny	server*	user*

Stateful
Firewall

Temporal Invariants

Server 0

Server 1

User 0

User 1
User 1 receives no packets from server 0

Standard Reachability Temporal Property

deny	server*	user*

without initiating a connection

Stateful
Firewall

Consider Data Instead of Packets

Server 0

Server 1
Firewall Cache

User 0

User 1

deny	user1	server0

User 1 receives no packet from Server 0

Consider Data Instead of Packets

Server 0

Server 1
Firewall

Secret

Cache

User 0

User 1

deny	user1	server0

User 1 receives no packet from Server 0

Consider Data Instead of Packets

Server 0

Server 1
Firewall

Secret

Secret

Cache

User 0

User 1

deny	user1	server0

User 1 receives no packet from Server 0

Consider Data Instead of Packets

Server 0

Server 1
Firewall

Secret

Secret

Cache

User 0

User 1

deny	user1	server0

Secret

User 1 receives no packet from Server 0

Consider Data Instead of Packets

Server 0

Server 1
Firewall

Secret

Secret

Cache

User 0

User 1

deny	user1	server0

User 1 receives no data from Server 0

Secret

User 1 receives no packet from Server 0

Roadmap

• Why stateful networks, and how does state affect invariants?

• Existing work on network verification.

• VMN: Our system for verifying networks with state.

• Scaling verification.

Network Verification Today

• Switches and Controllers: Static forwarding rules in switches.

HSA, Veriflow, NetKAT, Vericon, FlowLog, etc.

Network Verification Today

• Switches and Controllers: Static forwarding rules in switches.

HSA, Veriflow, NetKAT, Vericon, FlowLog, etc.

• Testing for networks with mutable datapaths

Buzz: Generate packets that are likely to trigger interesting behavior.

Network Verification Today

• Switches and Controllers: Static forwarding rules in switches.

HSA, Veriflow, NetKAT, Vericon, FlowLog, etc.

• Testing for networks with mutable datapaths

Buzz: Generate packets that are likely to trigger interesting behavior.

• Verification for networks with mutable datapaths

SymNet: Uses symbolic execution, limited state and behaviors.

Roadmap

• Why stateful networks, and how does state affect invariants?

• Existing work on network verification.

• VMN: Our system for verifying networks with state.

• Scaling verification.

VMN: System for scalable
verification of stateful networks.

VMN Flow
Model each middlebox in the network

Build network forwarding model

Invariant Holds Example of violation

Logical Invariants

SMT Solver (Z3 from MSR)

VMN Flow
Model each middlebox in the network

Build network forwarding model

Invariant Holds Example of violation

Logical Invariants

SMT Solver (Z3 from MSR)

Modeling Middleboxes
• One approach: Extract model from code

Modeling Middleboxes
• One approach: Extract model from code

• Problem: At the wrong level of abstraction.

Modeling Middleboxes
• One approach: Extract model from code

• Problem: At the wrong level of abstraction.

• Code written to match bit patterns in packet, etc.

Modeling Middleboxes
• One approach: Extract model from code

• Problem: At the wrong level of abstraction.

• Code written to match bit patterns in packet, etc.

• Configuration is in terms of higher level abstractions

Modeling Middleboxes
• One approach: Extract model from code

• Problem: At the wrong level of abstraction.

• Code written to match bit patterns in packet, etc.

• Configuration is in terms of higher level abstractions

• Example source and destination addresses, payload is infected, etc.

Modeling Middleboxes
• One approach: Extract model from code

• Problem: At the wrong level of abstraction.

• Code written to match bit patterns in packet, etc.

• Configuration is in terms of higher level abstractions

• Example source and destination addresses, payload is infected, etc.

• Verify invariants which are also expressed in these terms.

Challenges When Modeling Middleboxes

• Example configuration:

Challenges When Modeling Middleboxes

• Example configuration:

Drop all packets from connections transmitting infected files.

Challenges When Modeling Middleboxes

• Example configuration:

Drop all packets from connections transmitting infected files.

• How to define infected files: large, growing set of bit patterns.

Challenges When Modeling Middleboxes

• Example configuration:

Drop all packets from connections transmitting infected files.

• How to define infected files: large, growing set of bit patterns.

• Complexity of matching code prevents verification in even small networks.

Modeling Middleboxes

Modeling Middleboxes

Classify Packet
Determines what application sent a packet, etc.
Complex, proprietary processing.

Modeling Middleboxes

Classify Packet

Update Classification State

Determines what application sent a packet, etc.
Complex, proprietary processing.

Update state required for classification.

Modeling Middleboxes

Classify Packet

Update Classification State

Determines what application sent a packet, etc.
Complex, proprietary processing.

Update state required for classification.

Update Forwarding State Update forwarding State.

Modeling Middleboxes

Classify Packet

Update Classification State

Forward Packet

Determines what application sent a packet, etc.
Complex, proprietary processing.

Update state required for classification.

Always simple: forward or drop packets.

Update Forwarding State Update forwarding State.

Modeling Middleboxes

Classify Packet

Update Classification State

Forward Packet

Determines what application sent a packet, etc.
Complex, proprietary processing.

Update state required for classification.

Always simple: forward or drop packets.

Oracle: Specify data dependencies and outputs

Update Forwarding State Update forwarding State.

Modeling Middleboxes

Classify Packet

Update Classification State

Forward Packet

Determines what application sent a packet, etc.
Complex, proprietary processing.

Update state required for classification.

Always simple: forward or drop packets.

Oracle: Specify data dependencies and outputs

Forwarding Model: Specify Completely

Update Forwarding State Update forwarding State.

Modeling Middleboxes

Classify Packet

Forward Packet

Update Forwarding State

Update Classification State

Modeling Middleboxes

Classify Packet

Forward Packet

Update Forwarding State

Outputs
Is packet infected.

Dependencies
See all packets in connection (flow).

Update Classification State

Modeling Middleboxes

Classify Packet

Forward Packet

Update Forwarding State

Outputs
Is packet infected.

Dependencies
See all packets in connection (flow).

if (infected) {
 infected_connections.add(packet.flow)
}

Update Classification State

Modeling Middleboxes

Classify Packet

Forward Packet

Update Forwarding State

Outputs
Is packet infected.

Dependencies
See all packets in connection (flow).

if (packet.flow not in infected_connections) {
 forward (packet);
}

if (infected) {
 infected_connections.add(packet.flow)
}

Update Classification State

Sample Model
class Firewall (acls: Set[(Address, Address)])
{
 abstract malicious(p: Packet): bool
 val tainted: Set[Address]
 def model (p: Packet) = {
 tainted.contains(p.src) => forward(Empty)
 acls.contains((p.src, p.dst)) =>
 forward(Empty)
 malicious(p) => tainted.add(p.src);
 forward(Empty)
 _ => forward(Seq(p))
 }
}

Sample Model
class Firewall (acls: Set[(Address, Address)])
{
 abstract malicious(p: Packet): bool
 val tainted: Set[Address]
 def model (p: Packet) = {
 tainted.contains(p.src) => forward(Empty)
 acls.contains((p.src, p.dst)) =>
 forward(Empty)
 malicious(p) => tainted.add(p.src);
 forward(Empty)
 _ => forward(Seq(p))
 }
}

Oracle

Sample Model
class Firewall (acls: Set[(Address, Address)])
{
 abstract malicious(p: Packet): bool
 val tainted: Set[Address]
 def model (p: Packet) = {
 tainted.contains(p.src) => forward(Empty)
 acls.contains((p.src, p.dst)) =>
 forward(Empty)
 malicious(p) => tainted.add(p.src);
 forward(Empty)
 _ => forward(Seq(p))
 }
}

Oracle
State

Sample Model
class Firewall (acls: Set[(Address, Address)])
{
 abstract malicious(p: Packet): bool
 val tainted: Set[Address]
 def model (p: Packet) = {
 tainted.contains(p.src) => forward(Empty)
 acls.contains((p.src, p.dst)) =>
 forward(Empty)
 malicious(p) => tainted.add(p.src);
 forward(Empty)
 _ => forward(Seq(p))
 }
}

Oracle
State

Forwarding
Model

Network Forwarding Model

• Builds on network transfer functions.

Network Forwarding Model

• Builds on network transfer functions.

• Existing work from HSA, Veriflow, etc.

Network Forwarding Model

• Builds on network transfer functions.

• Existing work from HSA, Veriflow, etc.

• Abstracts all switches and routers into one big switch.

Network Forwarding Model

• Builds on network transfer functions.

• Existing work from HSA, Veriflow, etc.

• Abstracts all switches and routers into one big switch.

• Details in the paper.

Roadmap

• Why consider stateful networks?

• The current state of stateful network verification?

• VMN: Our system for verifying networks with state.

• Scaling verification.

Networks are Large
• Networks are huge in practice

Networks are Large
• Networks are huge in practice

• For example Google had 900K machines (approximately) in 2011

Networks are Large
• Networks are huge in practice

• For example Google had 900K machines (approximately) in 2011

• ISPs connect large numbers of machines.

Networks are Large
• Networks are huge in practice

• For example Google had 900K machines (approximately) in 2011

• ISPs connect large numbers of machines.

• Lots of middleboxes in these networks

Networks are Large
• Networks are huge in practice

• For example Google had 900K machines (approximately) in 2011

• ISPs connect large numbers of machines.

• Lots of middleboxes in these networks

• In datacenter each machine might be one or more middlebox.

Networks are Large
• Networks are huge in practice

• For example Google had 900K machines (approximately) in 2011

• ISPs connect large numbers of machines.

• Lots of middleboxes in these networks

• In datacenter each machine might be one or more middlebox.

• How do we address this?

Scaling Techniques Thus Far

• Abstract middlebox models

Scaling Techniques Thus Far

• Abstract middlebox models

• Simplify what needs to be considered per-middlebox.

Scaling Techniques Thus Far

• Abstract middlebox models

• Simplify what needs to be considered per-middlebox.

• Abstract network

Scaling Techniques Thus Far

• Abstract middlebox models

• Simplify what needs to be considered per-middlebox.

• Abstract network

• Simplify network forwarding.

Those Techniques are not Enough

• TACAS 2016: Network verification with state is EXPSPACE-complete.

Those Techniques are not Enough

• TACAS 2016: Network verification with state is EXPSPACE-complete.

• Practically for us SMT solvers timeout with large instances.

Those Techniques are not Enough

• TACAS 2016: Network verification with state is EXPSPACE-complete.

• Practically for us SMT solvers timeout with large instances.

• Other methods also do not handle such large instances

• Symbolic execution is exponential in number of branches, not better.

Those Techniques are not Enough

• TACAS 2016: Network verification with state is EXPSPACE-complete.

• Practically for us SMT solvers timeout with large instances.

• Other methods also do not handle such large instances

• Symbolic execution is exponential in number of branches, not better.

• Our techniques work for small instances, what to do about large instances?

Scaling Verification

• Two techniques: Slicing and symmetry.

Scaling Verification

• Two techniques: Slicing and symmetry.

• Slicing: Run verification on a subnetwork of size independent of network.

Scaling Verification

• Two techniques: Slicing and symmetry.

• Slicing: Run verification on a subnetwork of size independent of network.

• Symmetry: Reduce number of invariants to verify by leveraging symmetry in policy.

Network Slices

• Slices: Subnetworks for which a bisimulation with the original network exists.

• Ensures equivalent step in subnetwork for each step in the original network

• Slices are selected depending on the invariant being checked.

Network Slices
ACME Hosting

Willie E Coyote

Road Runner
Firewall

Cache

Sylvester
Tweety

Firewall
predator 6$ prey server

prey 6$ predator server

Network Slices
ACME Hosting

Willie E Coyote

Road Runner
Firewall

Cache

Sylvester
Tweety

Firewall
predator 6$ prey server

prey 6$ predator server

Invariant: RR cannot access data from Coyote’s server

Network Slices
ACME Hosting

Willie E Coyote

Road Runner
Firewall

Cache

Sylvester
Tweety

Firewall
predator 6$ prey server

prey 6$ predator server

Invariant: RR cannot access data from Coyote’s server

Willie E Coyote

Network Slices
ACME Hosting

Willie E Coyote

Road Runner
Firewall

Cache

Sylvester
Tweety

Firewall
predator 6$ prey server

prey 6$ predator server

Invariant: RR cannot access data from Coyote’s server

Willie E CoyoteFirewall

Cache

Network Slices
ACME Hosting

Willie E Coyote

Road Runner
Firewall

Cache

Sylvester
Tweety

Firewall
predator 6$ prey server

prey 6$ predator server

Invariant: RR cannot access data from Coyote’s server

Willie E CoyoteFirewall

Cache

Network Slices
ACME Hosting

Willie E Coyote

Road Runner
Firewall

Cache

Sylvester
Tweety

Firewall
predator 6$ prey server

prey 6$ predator server

Invariant: RR cannot access data from Coyote’s server

Willie E CoyoteFirewall

Cache

Establishes a bisimulation between slice and network.
Allows us to prove invariants in the slice.

Cannot always find such a slice.

Finding Slices

• Flow parallel middleboxes - partition network by flows.

• Origin agnostic middleboxes - partition network by policy equivalence class.

• Details in paper.

Evaluation Setup: Datacenter
• Consider AWS like multi-tenant datacenter.

Evaluation Setup: Datacenter
• Consider AWS like multi-tenant datacenter.

• Each tenant has policies for private and public hosts.

Evaluation Setup: Datacenter
• Consider AWS like multi-tenant datacenter.

• Each tenant has policies for private and public hosts.

• Three verification tasks

Evaluation Setup: Datacenter
• Consider AWS like multi-tenant datacenter.

• Each tenant has policies for private and public hosts.

• Three verification tasks

• Private hosts for one tenant cannot reach another

Evaluation Setup: Datacenter
• Consider AWS like multi-tenant datacenter.

• Each tenant has policies for private and public hosts.

• Three verification tasks

• Private hosts for one tenant cannot reach another

• Public host for one tenant cannot reach private hosts for another

Evaluation Setup: Datacenter
• Consider AWS like multi-tenant datacenter.

• Each tenant has policies for private and public hosts.

• Three verification tasks

• Private hosts for one tenant cannot reach another

• Public host for one tenant cannot reach private hosts for another

• Public hosts are universally reachable.

Verification Time (Datacenter)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Slice 5 10 15 20

Ti
m

e
(S

)

of Tenants

Priv-Priv Pub-Priv Priv-Pub

Verification Time (Datacenter)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Slice 5 10 15 20

Ti
m

e
(S

)

of Tenants

Priv-Priv Pub-Priv Priv-Pub

Role of Symmetry
• Consider a private datacenter

Role of Symmetry
• Consider a private datacenter

• Use verification to prevent some bugs from a Microsoft DC (IMC 2013)

Role of Symmetry
• Consider a private datacenter

• Use verification to prevent some bugs from a Microsoft DC (IMC 2013)

• Bugs include

Role of Symmetry
• Consider a private datacenter

• Use verification to prevent some bugs from a Microsoft DC (IMC 2013)

• Bugs include

• Misconfigured firewalls

Role of Symmetry
• Consider a private datacenter

• Use verification to prevent some bugs from a Microsoft DC (IMC 2013)

• Bugs include

• Misconfigured firewalls

• Misconfigured redundant firewalls

Role of Symmetry
• Consider a private datacenter

• Use verification to prevent some bugs from a Microsoft DC (IMC 2013)

• Bugs include

• Misconfigured firewalls

• Misconfigured redundant firewalls

• Misconfigured redundant routing

Role of Symmetry
• Consider a private datacenter

• Use verification to prevent some bugs from a Microsoft DC (IMC 2013)

• Bugs include

• Misconfigured firewalls

• Misconfigured redundant firewalls

• Misconfigured redundant routing

• Measure time to verify as a function of number of symmetric policy groups

Verification Time (With Symmetry)

 0

 50

 100

 150

 200

 250

 300

 350

25 50 100 250 500 1000

Ti
m

e
(S

)

of Policy Equivalence Classes

Rules Redundancy Traversal

Conclusion
• Verifying stateful networks is increasingly important.

• The primary challenge is scaling to realistic network.

• Two methods to scale

• Models where oracles are separated from forwarding behavior.

• Split the network into smaller verifiable portions is necessary.

