Veritying Reachability for
Stateful Networks

Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, Scott Shenker
UC Berkeley, MPI-SWS, TAU, ICSI

e Packets forwarded based on static rules.

 Rules change slowly In response to:

Stateless vs Stateful Networks

Stateless

 Changes in topology.

 Changes in policy.

e Packets forwarded based on static rules.

 Rules change slowly In response to:

Stateless vs Stateful Networks

Stateless Stateful

 Forwarding depends on rules and state.

 Changes in topology.

 Changes in policy.

e Packets forwarded based on static rules.

 Rules change slowly In response to:

Stateless vs Stateful Networks

Stateless Stateful

 Forwarding depends on rules and state.

* Rules change slowly (same as before).

 Changes in topology.

 Changes in policy.

e Packets forwarded based on static rules.

 Rules change slowly In response to:

Stateless vs Stateful Networks

Stateless Stateful

 Forwarding depends on rules and state.
* Rules change slowly (same as before).

e State changes at packet scales:
 Changes in topology.

 Changes in policy.

Stateless vs Stateful Networks

Stateless Stateful

 Forwarding depends on rules and state.

e Packets forwarded based on static rules.
* Rules change slowly (same as before).

 Rules change slowly In response to:
e State changes at packet scales:

 Changes in topology.

 Every time a connection is established.
* Changes in policy.

Stateless vs Stateful Networks

Stateless Stateful

 Forwarding depends on rules and state.

e Packets forwarded based on static rules.
* Rules change slowly (same as before).

 Rules change slowly In response to:
e State changes at packet scales:

 Changes in topology.

 Every time a connection is established.
* Changes in policy.

 Every time packet is forwarded.

Why consider stateful networks”

Networks are Increasingly Stateful

 Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM'12)

Networks are Increasingly Stateful

 Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM'12)

* Network function virtualization: Simplities NF deployment.

Networks are Increasingly Stateful

 Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM'12)
* Network function virtualization: Simplities NF deployment.

 Programmable switches (P4) also support state.

Networks are Increasingly Stateful

 Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM'12)
* Network function virtualization: Simplities NF deployment.
 Programmable switches (P4) also support state.

Not supported by most existing verification tools.

State impacts invariants

Invariants We Consider

* This work focuses on reachability and isolation invariants.

Invariants We Consider

* This work focuses on reachability and isolation invariants.

e Can packets from host A reach host B?

Invariants We Consider

* This work focuses on reachability and isolation invariants.
e Can packets from host A reach host B?

o But the addition of state raises some important issues:

Invariants We Consider

* This work focuses on reachability and isolation invariants.
e Can packets from host A reach host B?
o But the addition of state raises some important issues:

e |nvariants can include temporal aspects.

Invariants We Consider

* This work focuses on reachability and isolation invariants.
e Can packets from host A reach host B?

o But the addition of state raises some important issues:
e |nvariants can include temporal aspects.

 Might need to consider more than just packets.

femporal Invariants

" Statefu

Server O

 Firewal

deny server* user*

V' N
User 1

User 1 receives no packets from server O
Standard Reachability

Server 1

femporal Invariants

Server O
" Statefu
_ Firewall |
deny server user® Server 1

V' N
User 1

User 1 receives no packets from server 0 Wwithout initiating a connection
Standard Reachability Temporal Property

Consider Data Instead of Packets

A3
User O
/‘ Server O

[Firewall | [Cache
eeeeeeeeeeeeeeee
Server 1
' —
User 1

User 1 receives no packet from Server O

Consider Data Instead of Packets

A= lA:| Secret
User O
/‘ Server O

[Firewall | [Cache
eeeeeeeeeeeeeeee
Server 1
' —
User 1

User 1 receives no packet from Server O

Consider Data Instead of Packets

Secret
User O
G Slecret /‘ Server (O

[Firewall | [Cache
deny userl servero
Server 1
A=
User 1T

User 1 receives no packet from Server O

Consider Data Instead of Packets

Secret

User O

G Slecret /‘ Server (O

[Firewall | [Cache

deny userl server 5

Server 1

Secret

User 1

User 1 receives no packet from Server O

Consider Data Instead of Packets

Secret

User O

G Slecret /‘ Server (O

[Firewall | [Cache

deny userl server 5

Server 1

Secret

User 1

—gser—trecetves nopacketfromservero

User 1 receives no data from Server O

Roadmap

Existing work on network veritication.
VMN: Our system for veritying networks with state.

Scaling verification.

Network Verification Today

o Switches and Controllers: Static forwarding rules in switches.

HSA, Veritlow, NetKAT, Vericon, FlowlLog, etc.

Network Verification Today

o Switches and Controllers: Static forwarding rules in switches.
HSA, Veritlow, NetKAT, Vericon, FlowlLog, etc.
e Jesting for networks with mutable datapaths

Buzz: Generate packets that are likely to trigger interesting behavior.

Network Verification Today

o Switches and Controllers: Static forwarding rules in switches.

HSA, Veritlow, NetKAT, Vericon, FlowlLog, etc.
e Jesting for networks with mutable datapaths

Buzz: Generate packets that are likely to trigger interesting behavior.
* Verification for networks with mutable datapaths

SymNet: Uses symbolic execution, limited state and behaviors.

VMN: Our system for veritying networks with state.

Scaling verification.

VMN: System for scalable
verification of stateful networks.

VMN Flow

Model each middlebox In the network

4

Build network forwarding model

4

Logical Invariants

. .

SMT Solver (Z3 from MSR)

~ ~

Invariant Holds Example of violation

VMN Flow

Model each middlebox In the network

4

4

. .

Modeling Middleboxes

 One approach: Extract model from code

Modeling Middleboxes

 One approach: Extract model from code

 Problem: At the wrong level of abstraction.

Modeling Middleboxes

 One approach: Extract model from code
 Problem: At the wrong level of abstraction.

 Code written to match bit patterns in packet, etc.

Modeling Middleboxes

 One approach: Extract model from code
 Problem: At the wrong level of abstraction.
 Code written to match bit patterns in packet, etc.

* Configuration is in terms of higher level abstractions

Modeling Middleboxes

 One approach: Extract model from code
 Problem: At the wrong level of abstraction.
 Code written to match bit patterns in packet, etc.
* Configuration is in terms of higher level abstractions

 Example source and destination addresses, payload is infected, etc.

Modeling Middleboxes

One approach: Extract model from code
Problem: At the wrong level of abstraction.
 Code written to match bit patterns in packet, etc.
* Configuration is in terms of higher level abstractions
 Example source and destination addresses, payload is infected, etc.

Verity invariants which are also expressed in these terms.

Challenges When Modeling Middleboxes

* Example configuration:

Challenges When Modeling Middleboxes

* Example configuration:

Drop all packets from connections transmitting infected files.

Challenges When Modeling Middleboxes

* Example configuration:
Drop all packets from connections transmitting infected files.

 How to define infected files: large, growing set of bit patterns.

Challenges When Modeling Middleboxes

* Example configuration:
Drop all packets from connections transmitting infected files.
 How to define infected files: large, growing set of bit patterns.

 Complexity of matching code prevents verification in even small networks.

Modeling Middleboxes

Modeling Middleboxes

Classifvaacket Determines what application sent a packet, etc.
Complex, proprietary processing.

Modeling Middleboxes

~N

\ 4
Classity Packet

l

Update Classification State

Update state required for classification.

Modeling Middleboxes

4 A

\ 4
Classity Packet

l

Update Classification State

Update Forwarding State Update forwarding State.

Modeling Middleboxes

4

Classity Packet

l

Update Classification State

\ 4

Update Forwarding State

4

Forward

Packet

Always simple: forward or drop packets.

Modeling Middleboxes

Oracle: Specify data dependencies and outputs

4)
v Determines what application sent a packet, etc.
Classity Packet , ,
l Complex, proprietary processing.
Update Classification State Update state required tor classification.

\ 4

Update Forwarding State

\ 4
Forward Packet

Modeling Middleboxes

Oracle: Specify data dependencies and outputs

4

Classity Packet

l

Update Classification State

\ 4

Update Forwarding State

\ 4
Forward Packet

Forwarding Model: Specify Completely

Modeling Middleboxes

\4
Classity Packet

l

Update Classification State

\ 4

Update Forwarding State

\ 4
Forward Packet

Modeling Middleboxes

\ Dependencies

— See all packets in connection (flow).
Classity Packet

l Outputs

Update Classification State IS packet infected.

\ 4

Update Forwarding State

\ 4
Forward Packet

Modeling Middleboxes

\ Dependencies

— See all packets in connection (flow).
Classity Packet

l Outputs
Update Classification State |s packet infected.
v if (infected) {
Update Forwarding State infected_connections.add(packet.flow)
j

\ 4
Forward Packet

Modeling Middleboxes

\ Dependencies

Y See all packets in connection (flow).
Classity Packet P ()

l Outputs
Update Classification State IS packet infected.
v f (iInfected) {
Update Forwarding State infected_connections.add(packet.flow)
j
Forwarcv Packet if (packet.flow not in infected_connections) {

y forward (packet);

}

Sample Model

class Firewall (acls: Set[(Address, Address)])
{
abstract malicious(p: Packet): bool
val tainted: Set[Address]
def model (p: Packet) = {
tainted.contains(p.src) => forward(Empty)
acls.contains((p.src, p.dst)) =>
forward(Empty)
malicious(p) => tainted.add(p.src);
forward(Empty)
_ => forward(Seq(p))

Sample Model

class Firewall (acls: Set[(Address, Address)])
{
abstract malicious(p: Packet): bool Oracle
val tainted: Set[Address]
def model (p: Packet) = {
tainted.contains(p.src) => forward(Empty)
acls.contains((p.src, p.dst)) =>
forward(Empty)
malicious(p) => tainted.add(p.src);
forward(Empty)
_ => forward(Seq(p))

Sample Model

class Firewall (acls: Set[(Address, Address)])

{
abstract malicious(p: Packet): bool Oracle
val tainted: Set[Address] State

def model (p: Packet) = {
tainted.contains(p.src) => forward(Empty)
acls.contains((p.src, p.dst)) =>
forward(Empty)
malicious(p) => tainted.add(p.src);
forward(Empty)
_ => forward(Seq(p))

Sample Model

class Firewall (acls: Set[(Address, Address)])

{
abstract malicious(p: Packet): bool Oracle
val tainted: Set[Address] State

def model (p: Packet) = {
tainted.contains(p.src) => forward(Empty)
acls.contains((p.src, p.dst)) =>
forward(Empty) Forwarding
malicious(p) => tainted.add(p.src); Model

forward(Empty)
_ => forward(Seq(p))

Network Forwarding Model

e Builds on network transfer functions.

Network Forwarding Model

e Builds on network transfer functions.

o Existing work from HSA, Veriflow, etc.

Network Forwarding Model

 Builds on network transfer functions.
o Existing work from HSA, Veriflow, etc.

* Abstracts all switches and routers into one big switch.

Network Forwarding Model

 Builds on network transfer functions.
o Existing work from HSA, Veriflow, etc.
* Abstracts all switches and routers into one big switch.

e Detalls In the paper.

\ o _/
\‘l . (YY))
\ V N, \J U \/ _/

Scaling verification.

Networks are Large

 Networks are huge In practice

Networks are Large

 Networks are huge In practice

e For example Google had 900K machines (approximately) in 2011

Networks are Large

 Networks are huge In practice
e For example Google had 900K machines (approximately) in 2011

* |SPs connect large numbers of machines.

Networks are Large

 Networks are huge In practice
e For example Google had 900K machines (approximately) in 2011
* |SPs connect large numbers of machines.

e | ots of middleboxes Iin these networks

Networks are Large

 Networks are huge In practice
e For example Google had 900K machines (approximately) in 2011
* |SPs connect large numbers of machines.

* Lots of middleboxes in these networks

e |n datacenter each machine might be one or more middlebox.

Networks are Large

 Networks are huge In practice
e For example Google had 900K machines (approximately) in 2011
* |SPs connect large numbers of machines.

* Lots of middleboxes in these networks
e |n datacenter each machine might be one or more middlebox.

e How do we address this?

Scaling Techniques Thus Far

e Abstract middlebox models

Scaling Techniques Thus Far

e Abstract middlebox models

o Simplify what needs to be considered per-middlebox.

Scaling Techniques Thus Far

* Abstract middiebox models
o Simplify what needs to be considered per-middlebox.

e Abstract network

Scaling Techniques Thus Far

e Abstract middlebox models

o Simplify what needs to be considered per-middlebox.

e Abstract network

e Simplify network forwarding.

Ihose lechniques are not Enougn

 TACAS 2016: Network verification with state is EXPSPACE-complete.

Ihose lechniques are not Enougn

 TACAS 2016: Network verification with state is EXPSPACE-complete.

* Practically for us SMT solvers timeout with large instances.

Ihose lechniques are not Enougn

 TACAS 2016: Network verification with state is EXPSPACE-complete.
* Practically for us SMT solvers timeout with large instances.
* Other methods also do not handle such large instances

e Symbolic execution Is exponential in number of branches, not better.

Ihose lechniques are not Enougn

TACAS 2016: Network verification with state is EXPSPACE-complete.
Practically for us SMT solvers timeout with large instances.

Other methods also do not handle such large instances

e Symbolic execution Is exponential in number of branches, not better.

Our technigues work for small instances, what to do about large instances”

Scaling Verification

e [wo technigues: Slicing and symmetry.

Scaling Verification

e [wo technigues: Slicing and symmetry.

« Slicing: Run verification on a subnetwork of size independent of network.

Scaling Verification

e [wo technigues: Slicing and symmetry.
« Slicing: Run verification on a subnetwork of size independent of network.

- Symmetry: Reduce number of invariants to verify by leveraging symmetry in policy.

Network Slices

e Slices: Subnetworks for which a bisimulation with the original network exists.
e Ensures equivalent step in subnetwork for each step in the original network

e Slices are selected depending on the invariant being checked.

Network Slices

ACME Hosting

Sylvester

D’\ Firewal)\

predator 4+ prey server

Tweety

}Q.%@@Zﬂ% s

prey < predator server
Firewall

Willie E Coyote

Road Runner

Network Slices

P\

- >
e

predator 4+ prey server

prey < predator server
Firewall
V=

Invariant: RR cannot access data from Coyote’s server

D’\ Firewal)\

}Q.%@@Zﬂ% o

ACME Hosting

Sylvester

Tweety

Willie E Coyote

Road Runner

Network Slices

ACME Hosting

P\

- >
e

Sylvester

predator s prey server Twe ety

prey < predator server —
Willie E Coyote
Firewall
V=

Road Runner
Invariant: RR cannot access data from Coyote’s server

D’\ Firewal)\

}Q.%@@Zﬂ% =

Willie E Coyote

R
|

Network Slices

predator s prey server

prey ¢ predator server CaChe <
' —

Invariant: RR cannot access data from Coyote’s server

hwh@}

ACME Hosting

Sylvester

Tweety

Willie E Coyote

Road Runner

Cache]\

[
V4 — | Firewal]/

Willie E Coyote

Network Slices

predator s prey server

prey ¢ predator server CaChe <
' —

Invariant: RR cannot access data from Coyote’s server

ACME Hosting

Sylvester

Tweety

Willie E Coyote

Road Runner

[Cache]\
.éb Firewall

INYEE Nwtﬁ@%

Willie E Coyote

Network Slices

Establishes a bisimulation between slice and network.
Allows us to prove invariants in the slice.

Cannot always find such a slice.

Finding Slices

* Flow parallel middleboxes - partition network by flows.
* Origin agnostic middleboxes - partition network by policy equivalence class.

* Detalls In paper.

Evaluation Setup: Datacenter

e Consider AWS like multi-tenant datacenter.

Evaluation Setup: Datacenter

e Consider AWS like multi-tenant datacenter.

 Each tenant has policies for private and public hosts.

Evaluation Setup: Datacenter

o Consider AWS like multi-tenant datacenter.
 Each tenant has policies for private and public hosts.

e [hree verification tasks

Evaluation Setup: Datacenter

o Consider AWS like multi-tenant datacenter.
 Each tenant has policies for private and public hosts.
e Three veritication tasks

e Private hosts for one tenant cannot reach another

Evaluation Setup: Datacenter

o Consider AWS like multi-tenant datacenter.
 Each tenant has policies for private and public hosts.
* [hree verification tasks

e Private hosts for one tenant cannot reach another

e Public host for one tenant cannot reach private hosts for another

Evaluation Setup: Datacenter

o Consider AWS like multi-tenant datacenter.
 Each tenant has policies for private and public hosts.
* [hree verification tasks

e Private hosts for one tenant cannot reach another

e Public host for one tenant cannot reach private hosts for another

 Public hosts are universally reachable.

Verification Time (Datacenter)

Priv-Pub IS
100000

10000
1000
100
10

1

0.1
0.01

[iIme (S)

Verification Time (Datacenter)

Priv-Priv Il Pub-Priv Priv-Pub -
100000 == = = = “ ° = °°°°c°°cccceocooocoooo oo

10000 o cccccccccccccccccccccececco

Slice 5 10 15 20

of Tenants

Role of Symmetry

e Consider a private datacenter

Role of Symmetry

e Consider a private datacenter

» Use verification to prevent some bugs from a Microsoft DC (IMC 2013)

Role of Symmetry

e Consider a private datacenter
» Use verification to prevent some bugs from a Microsoft DC (IMC 2013)

 Bugs include

Role of Symmetry

e Consider a private datacenter
» Use verification to prevent some bugs from a Microsoft DC (IMC 2013)
 Bugs include

* Misconfigured firewalls

Role of Symmetry

e Consider a private datacenter

» Use verification to prevent some bugs from a Microsoft DC (IMC 2013)
 Bugs include

* Misconfigured firewalls

 Misconfigured redundant firewalls

Role of Symmetry

e Consider a private datacenter

» Use verification to prevent some bugs from a Microsoft DC (IMC 2013)
 Bugs include

* Misconfigured firewalls

 Misconfigured redundant firewalls

 Misconfigured redundant routing

Role of Symmetry

e Consider a private datacenter

» Use verification to prevent some bugs from a Microsoft DC (IMC 2013)
 Bugs include

* Misconfigured firewalls

 Misconfigured redundant firewalls

 Misconfigured redundant routing

 Measure time to verity as a function of number of symmetric policy groups

Veritication Time (With Symmetry)

Rules B Redundancy Traversal IS
35() =° ®* ®* ®* * ° cccc e e e e cec e oo o000 oo
300 PPe s s e cccc e e oo TTE e oo
250 fre s s e s e e e e e i i e s - e e e
(A =
Ll R R R
=
;150 ------------------------

25 50 100 250 500 1000

of Policy Equivalence Classes

Conclusion

Veritying stateful networks is increasingly important.

The primary challenge Is scaling to realistic network.

Two methods to scale

 Models where oracles are separated from tforwarding behavior.

o Split the network into smaller veritiable portions is necessary.

