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Stateless vs Stateful Networks
Stateless Stateful

• Packets forwarded based on static rules. 

• Rules change slowly in response to: 

• Changes in topology. 

• Changes in policy.

• Forwarding depends on rules and state.

• Rules change slowly (same as before).

• State changes at packet scales:

• Every time a connection is established.

• Every time packet is forwarded.
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Networks are Increasingly Stateful

• Middleboxes: 1/3rd of all network devices in enterprises (SIGCOMM’12)

• Network function virtualization: Simplifies NF deployment.

• Programmable switches (P4) also support state.

Not supported by most existing verification tools.



State impacts invariants
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Invariants We Consider

• This work focuses on reachability and isolation invariants.

• Can packets from host A reach host B?

• But the addition of state raises some important issues:

• Invariants can include temporal aspects.

• Might need to consider more than just packets.
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Temporal Invariants

Server 0

Server 1

User 0

User 1
User 1 receives no packets from server 0 

Standard Reachability Temporal Property

deny	server*	user*

without initiating a connection 

Stateful 
Firewall
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User 1 receives no data from Server 0

Secret

User 1 receives no packet from Server 0
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• Switches and Controllers: Static forwarding rules in switches. 

HSA, Veriflow, NetKAT, Vericon, FlowLog, etc.

• Testing for networks with mutable datapaths 

Buzz: Generate packets that are likely to trigger interesting behavior.

• Verification for networks with mutable datapaths 

SymNet: Uses symbolic execution, limited state and behaviors.



Roadmap

• Why stateful networks, and how does state affect invariants? 

• Existing work on network verification. 

• VMN: Our system for verifying networks with state. 

• Scaling verification.



VMN: System for scalable 
verification of stateful networks.
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Modeling Middleboxes
• One approach: Extract model from code

• Problem: At the wrong level of abstraction.

• Code written to match bit patterns in packet, etc.

• Configuration is in terms of higher level abstractions

• Example source and destination addresses, payload is infected, etc.

• Verify invariants which are also expressed in these terms.
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Challenges When Modeling Middleboxes

• Example configuration:

Drop all packets from connections transmitting infected files.

• How to define infected files: large, growing set of bit patterns.

• Complexity of matching code prevents verification in even small networks.
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Modeling Middleboxes

Classify Packet

Update Classification State

Forward Packet

Determines what application sent a packet, etc. 
Complex, proprietary processing.

Update state required for classification.

Always simple: forward or drop packets.

Oracle: Specify data dependencies and outputs

Forwarding Model: Specify Completely

Update Forwarding State Update forwarding State.
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Modeling Middleboxes

Classify Packet

Forward Packet

Update Forwarding State

Outputs
Is packet infected.

Dependencies
See all packets in connection (flow).

if (packet.flow not in infected_connections) { 
    forward (packet); 
}

if (infected) { 
    infected_connections.add(packet.flow) 
}

Update Classification State
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Sample Model
class Firewall (acls: Set[(Address, Address)]) 
{ 
  abstract malicious(p: Packet): bool 
  val tainted: Set[Address] 
  def model (p: Packet) = { 
    tainted.contains(p.src) => forward(Empty) 
    acls.contains((p.src, p.dst)) =>  
         forward(Empty) 
    malicious(p) => tainted.add(p.src);      
         forward(Empty) 
    _ => forward(Seq(p)) 
  } 
} 

Oracle
State

Forwarding 
Model
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Network Forwarding Model

• Builds on network transfer functions.

• Existing work from HSA, Veriflow, etc.

• Abstracts all switches and routers into one big switch.

• Details in the paper.



Roadmap

• Why consider stateful networks? 

• The current state of stateful network verification? 

• VMN: Our system for verifying networks with state. 

• Scaling verification.
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Networks are Large
• Networks are huge in practice

• For example Google had 900K machines (approximately) in 2011

• ISPs connect large numbers of machines.

• Lots of middleboxes in these networks

• In datacenter each machine might be one or more middlebox.

• How do we address this?
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Scaling Techniques Thus Far

• Abstract middlebox models

• Simplify what needs to be considered per-middlebox.

• Abstract network

• Simplify network forwarding.
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Those Techniques are not Enough

• TACAS 2016: Network verification with state is EXPSPACE-complete.

• Practically for us SMT solvers timeout with large instances.

• Other methods also do not handle such large instances 

• Symbolic execution is exponential in number of branches, not better.

• Our techniques work for small instances, what to do about large instances?
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Scaling Verification

• Two techniques: Slicing and symmetry.

• Slicing: Run verification on a subnetwork of size independent of network.

• Symmetry: Reduce number of invariants to verify by leveraging symmetry in policy.



Network Slices

• Slices: Subnetworks for which a bisimulation with the original network exists. 

• Ensures equivalent step in subnetwork for each step in the original network 

• Slices are selected depending on the invariant being checked.
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Network Slices
ACME Hosting

Willie E Coyote

Road Runner
Firewall

Cache

Sylvester
Tweety

Firewall
predator 6$ prey server

prey 6$ predator server

Invariant: RR cannot access data from Coyote’s server

Willie E CoyoteFirewall

Cache

Establishes a bisimulation between slice and network.
Allows us to prove invariants in the slice.



Cannot always find such a slice.



Finding Slices

• Flow parallel middleboxes - partition network by flows. 

• Origin agnostic middleboxes - partition network by policy equivalence class. 

• Details in paper.
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Evaluation Setup: Datacenter
• Consider AWS like multi-tenant datacenter.

• Each tenant has policies for private and public hosts.

• Three verification tasks

• Private hosts for one tenant cannot reach another

• Public host for one tenant cannot reach private hosts for another

• Public hosts are universally reachable.
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Role of Symmetry
• Consider a private datacenter

• Use verification to prevent some bugs from a Microsoft DC (IMC 2013)

• Bugs include

• Misconfigured firewalls

• Misconfigured redundant firewalls

• Misconfigured redundant routing

• Measure time to verify as a function of number of symmetric policy groups
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Conclusion
• Verifying stateful networks is increasingly important. 

• The primary challenge is scaling to realistic network. 

• Two methods to scale 

• Models where oracles are separated from forwarding behavior. 

• Split the network into smaller verifiable portions is necessary.


