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Software Defined Networks

• Forwarding implemented by switches.

• Rules computed by controllers.

• Rules depend on policy and network state.

• Policy: What paths are acceptable?

• Network State: Current state of links and switches
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How to build controllers?
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Single Image Controllers

• Controller runs on a single server.

• Examples: Nox, Pox, Ryu, etc.
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Single Image Controllers: Assumptions

• The controller observes a sequence of events.

• Network state computed using event sequence.

• Applications react to sequence of events.

• Events and updates sent over TCP channels.

• Events from different switches can be reordered.

• Updates to different switches can be reordered.
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• Events can be reordered. 

• Updates can be reordered. 

• Events and updates sent over reliable channels - TCP. 

• Controllers observe a consistent sequence of events. 
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• Events can be reordered. 

• Updates can be reordered. 

• Events and updates sent over reliable channels - TCP. 

• Controllers observe a consistent sequence of events. 

• Applications react to sequence of events. 

• Network state computed using event sequence.
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e1 e0u0 u1e1 e0Controller How to handle controller failures, scale controllers, etc.?

Move to distributed controllers.



How to build distributed controllers?
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Why is this Harder?
• Event ordering can differ across controllers.

• Rules must converge despite this reordering.

• Two ways to handle this

• Algorithms are correct despite reordering.

• Mechanisms so controllers agree on ordering.

• Rely on ordering mechanisms for generality.

• How to implement event ordering?
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Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.
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Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

• Applications always see events in agreed order.

• Can use same algorithms as single image controller.

• Controllers are Replicated State Machines.

• Adopted by Onix, ONOS, etc.

• How to implement consensus?

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1 e0, e1

e0, e1

e0 e1

e0 e1



Canonical Consensus Mechanism
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Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)
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Application

Framework

• If leader fails protocol appoints new leader.

• Protocol must ensure leader is one with newest data.

• Quorum replication ensures order cannot be forgotten.

• Controller can reconstruct state by replaying events.

e0e1
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Canonical Consensus Mechanism: Limitations

• Fault Tolerance: at least one partition fails during network partitions.

• Scalability: Worse performance worsens with more controllers.

• Control Plane Requirements: Performance is sensitive to losses, latency, etc.
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Consensus Assumption

• Network state (topology and forwarding table) resides in controllers.

• RSMs ensure network state is not lost when controllers fail.

• Similar to distributed key value stores.
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Consensus Assumption is Wrong

But we can query the network to discover current network state.

Safe to lose network state!
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Distributed Controllers: An Alternative

• Assume all controllers agree on policy.

• Each controller

1.Periodically queries network state.

2.Uses state and policy to compute updates.

3.Installs updates in the network.

• Converges assuming quiescence.

Network

1 1

Controller
Policy

Controller
Policy

2. Compute Updates 2. Compute Updates

3 3
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SCL: Programming Model and Architecture

• Builds on standard single-image controller (Pox).

• Switch Agents implement querying and channels.

• Controller Proxies ensure convergence.
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SCL Controller Requirements

• Deterministic: Controllers compute the same rule for given network state.

• Idempotent: The process of computing and updating rules is idempotent.

• Proactive Applications: Compute rules based on network state not packet-ins.

• Triggered Updates: Can trigger rule recomputation based on event log.
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SCL Proxies and Controllers
• Proxies maintain a log of all prior network events.

• All switch events are sent to all proxies.

• Proxy triggers controller computation.

• Computation based on current log.

• Controller sends updates to proxy.

• Proxy maintains state about installed rules.

• Deduplicates updates before applying them.
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SCL Proxies and Controllers: Challenges

• Agreement: Proxies must eventually agree on order.

• Agreement: Must eventually agree on the set of events.

• Awareness: Controllers and network state agrees eventually.
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Addressing SCL Challenges

• Address these with two mechanisms.

• Gossip between controllers

• Eventual agreement on observed events.

• Also assures agreement on ordering.

• Periodically query network for state.

• Awareness of network state.
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Conceptually Unnecessary

• RSM assumption: Truth about network lies in the controller.

• Reality: Truth about the network lies within the network (dataplane).

• Packets are processed by dataplane not by controllers.



Improves Performance and Resilience

Consensus

SCL



Improves Performance and Resilience

Responsiveness

Consensus

SCL



Improves Performance and Resilience

Responsiveness

At least 1 RTT  
between controllersConsensus

SCL



Improves Performance and Resilience

Responsiveness

At least 1 RTT  
between controllers

Respond immediately

Consensus

SCL



Improves Performance and Resilience

Responsiveness Scalability

At least 1 RTT  
between controllers

Respond immediately

Consensus

SCL



Improves Performance and Resilience

Responsiveness Scalability

At least 1 RTT  
between controllers

Latency increases 
with participants

Respond immediately

Consensus

SCL



Improves Performance and Resilience

Responsiveness Scalability

At least 1 RTT  
between controllers

Latency increases 
with participants

Respond immediately Does not increase
with # of  
participants

Consensus

SCL



Improves Performance and Resilience

Responsiveness Scalability Fault Tolerance

At least 1 RTT  
between controllers

Latency increases 
with participants

Respond immediately Does not increase
with # of  
participants

Consensus

SCL



Improves Performance and Resilience

Responsiveness Scalability Fault Tolerance

At least 1 RTT  
between controllers

Latency increases 
with participants

Quorum must be 
available for progress

Respond immediately Does not increase
with # of  
participants

Consensus

SCL



Improves Performance and Resilience

Responsiveness Scalability Fault Tolerance

At least 1 RTT  
between controllers

Latency increases 
with participants

Quorum must be 
available for progress

Respond immediately Does not increase
with # of  
participants

Functional as long as 
a controller is available

Consensus

SCL



What about Route Convergence?
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In the Paper

• Proof that gossip and periodic update are sufficient to guarantee convergence. 

• Broadcast based in-band control channels. 

• Mechanisms for policy update. 

• Interaction with other types of policies. 

• Other performance results.
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Atomic registers: Schiff et al (CCR’16)

Serializability

Consensus: ONIX (OSDI’10), ONOS

Exactly-Once: Ravana (SOSR’15)
Stronger Semantics

Labels: Reitblatt et al. (SIGCOMM ’12)

Ordered Updates:  
Mahajan et al. (HotNets ’13) 
McClurg et al. (PLDI ’15)

Synchronized Clocks: 
Mirzahi et al. (SOSR ’15)
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Conclusion
• Conventional wisdom: Distributed SDN controllers need consensus.

• This talk: no consensus required.

• Can use existing single image controllers with SCL.

• Implication 

• Simplifies controllers.

• Improves convergence time, responsiveness, robustness.


