
SCL: Simple Coordination Layer
Aurojit Panda, Wenting Zheng, Xiaohe Hu, Arvind Krishnamurthy, Scott Shenker

UC Berkeley, Tsinghua University, University of Washington, ICSI

Software Defined Networks

• Forwarding implemented by switches.

Switch Switch

Switch Switch

Software Defined Networks

• Forwarding implemented by switches.

• Rules computed by controllers.

Switch Switch

Switch Switch

Controller

Software Defined Networks

• Forwarding implemented by switches.

• Rules computed by controllers.

• Rules depend on policy and network state.

Switch Switch

Switch Switch

Controller

Software Defined Networks

• Forwarding implemented by switches.

• Rules computed by controllers.

• Rules depend on policy and network state.

• Policy: What paths are acceptable?

Switch Switch

Switch Switch

Controller

Software Defined Networks

• Forwarding implemented by switches.

• Rules computed by controllers.

• Rules depend on policy and network state.

• Policy: What paths are acceptable?

• Network State: Current state of links and switches
Switch Switch

Switch Switch

Controller

How to build controllers?

Single Image Controllers

• Controller runs on a single server.

Switch Switch

Switch Switch

Single Image Controller

Single Image Controllers

• Controller runs on a single server.

• Examples: Nox, Pox, Ryu, etc.

Switch Switch

Switch Switch

Single Image Controller

Single Image Controllers: Assumptions

• The controller observes a sequence of events.

Time

Switch A

Switch B

e1 e0Controller

Single Image Controllers: Assumptions

• The controller observes a sequence of events.

• Network state computed using event sequence.

Time

Switch A

Switch B

e1 e0Controller

Single Image Controllers: Assumptions

• The controller observes a sequence of events.

• Network state computed using event sequence.

• Applications react to sequence of events.

Time

Switch A

Switch B

e1 e0Controller

Single Image Controllers: Assumptions

• The controller observes a sequence of events.

• Network state computed using event sequence.

• Applications react to sequence of events.

• Events and updates sent over TCP channels.

Time

Switch A

Switch B

e1 e0Controller

Single Image Controllers: Assumptions

• The controller observes a sequence of events.

• Network state computed using event sequence.

• Applications react to sequence of events.

• Events and updates sent over TCP channels.

• Events from different switches can be reordered.Time

Switch A

Switch B

e0

e1

e1 e0Controller

Single Image Controllers: Assumptions

• The controller observes a sequence of events.

• Network state computed using event sequence.

• Applications react to sequence of events.

• Events and updates sent over TCP channels.

• Events from different switches can be reordered.

• Updates to different switches can be reordered.

Time

Switch A

Switch B

e0

e1

u1

u0

e1 e0u0 u1Controller

• Events can be reordered.

• Updates can be reordered.

• Events and updates sent over reliable channels - TCP.

• Controllers observe a consistent sequence of events.

• Applications react to sequence of events.

• Network state computed using event sequence.

Time

Switch A

Switch B

e0

e1

u1

u0

e1 e0u0 u1e1 e0Controller How to handle controller failures, scale controllers, etc.?

• Events can be reordered.

• Updates can be reordered.

• Events and updates sent over reliable channels - TCP.

• Controllers observe a consistent sequence of events.

• Applications react to sequence of events.

• Network state computed using event sequence.

Time

Switch A

Switch B

e0

e1

u1

u0

e1 e0u0 u1e1 e0Controller How to handle controller failures, scale controllers, etc.?

Move to distributed controllers.

How to build distributed controllers?

Why is this Harder?
• Event ordering can differ across controllers.

Time

Switch A

Switch B

Controller I

Controller II

Why is this Harder?
• Event ordering can differ across controllers.

Time

Switch A

Switch B

e0

e1

e1 e0Controller I

Controller II e0 e1

Why is this Harder?
• Event ordering can differ across controllers.

• Rules must converge despite this reordering.

Time

Switch A

Switch B

e0

e1

e1 e0Controller I

Controller II e0 e1

Why is this Harder?
• Event ordering can differ across controllers.

• Rules must converge despite this reordering.

• Two ways to handle this

Time

Switch A

Switch B

e0

e1

e1 e0Controller I

Controller II e0 e1

Why is this Harder?
• Event ordering can differ across controllers.

• Rules must converge despite this reordering.

• Two ways to handle this

• Algorithms are correct despite reordering.

Time

Switch A

Switch B

e0

e1

e1 e0Controller I

Controller II e0 e1

Why is this Harder?
• Event ordering can differ across controllers.

• Rules must converge despite this reordering.

• Two ways to handle this

• Algorithms are correct despite reordering.

• Mechanisms so controllers agree on ordering.
Time

Switch A

Switch B

e0

e1

e1 e0Controller I

Controller II e0 e1

Why is this Harder?
• Event ordering can differ across controllers.

• Rules must converge despite this reordering.

• Two ways to handle this

• Algorithms are correct despite reordering.

• Mechanisms so controllers agree on ordering.

• Rely on ordering mechanisms for generality.
Time

Switch A

Switch B

e0

e1

e1 e0Controller I

Controller II e0 e1

Why is this Harder?
• Event ordering can differ across controllers.

• Rules must converge despite this reordering.

• Two ways to handle this

• Algorithms are correct despite reordering.

• Mechanisms so controllers agree on ordering.

• Rely on ordering mechanisms for generality.

• How to implement event ordering?

Time

Switch A

Switch B

e0

e1

e1 e0Controller I

Controller II e0 e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1 e0, e1

e0, e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

• Applications always see events in agreed order.

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1 e0, e1

e0, e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

• Applications always see events in agreed order.

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1 e0, e1

e0, e1

e0 e1

e0 e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

• Applications always see events in agreed order.

• Can use same algorithms as single image controller.

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1 e0, e1

e0, e1

e0 e1

e0 e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

• Applications always see events in agreed order.

• Can use same algorithms as single image controller.

• Controllers are Replicated State Machines.

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1 e0, e1

e0, e1

e0 e1

e0 e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

• Applications always see events in agreed order.

• Can use same algorithms as single image controller.

• Controllers are Replicated State Machines.

• Adopted by Onix, ONOS, etc.Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1 e0, e1

e0, e1

e0 e1

e0 e1

Canonical Solution: Consensus
• Consensus: Protocol to get agreement on a value.

• Rely on consensus to agree on event order.

• Applications always see events in agreed order.

• Can use same algorithms as single image controller.

• Controllers are Replicated State Machines.

• Adopted by Onix, ONOS, etc.

• How to implement consensus?

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Framework

Consensus

e0

e0e1

e1 e0, e1

e0, e1

e0 e1

e0 e1

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

Controller I

Controller II
Application

Framework

Application

Framework

Controller III
Application

Framework

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

Controller I

Controller II
Application

Framework

Application

Framework

Controller III
Application

Framework • Mechanism appoints a leader.

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Frameworke0e1

Controller III
Application

Framework • Mechanism appoints a leader.

• Leader receives all network events - decides on order.

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Frameworke0e1

e0e1

Controller III
Application

Framework • Mechanism appoints a leader.

• Leader receives all network events - decides on order.

• Leader replicates ordered events at other controllers.

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Frameworke0e1

e0e1

Controller III
Application

Framework • Mechanism appoints a leader.

• Leader receives all network events - decides on order.

• Leader replicates ordered events at other controllers.

• Must wait for a quorum of controllers to confirm replication.

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Frameworke0e1

e0e1

e0e1

Controller III
Application

Framework • Mechanism appoints a leader.

• Leader receives all network events - decides on order.

• Leader replicates ordered events at other controllers.

• Must wait for a quorum of controllers to confirm replication.

• Once quorum has confirmed delivers events to application.

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Frameworke0e1

e0e1

e0e1

Controller III
Application

Framework

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Frameworke0e1

e0e1

e0e1

Controller III
Application

Framework

• If leader fails protocol appoints new leader.

x x

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Frameworke0e1

e0e1

e0e1

Controller III
Application

Framework

• If leader fails protocol appoints new leader.

• Protocol must ensure leader is one with newest data.
x x

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Frameworke0e1

e0e1

e0e1

Controller III
Application

Framework

• If leader fails protocol appoints new leader.

• Protocol must ensure leader is one with newest data.

• Quorum replication ensures order cannot be forgotten.
x x

Canonical Consensus Mechanism

• Several algorithms in use - ZAB, Raft, Paxos variants (e.g., MultiPaxos)

Time

Switch A

Switch B

e0

e1

Controller I

Controller II
Application

Framework

Application

Frameworke0e1

e0e1

e0e1

Controller III
Application

Framework

• If leader fails protocol appoints new leader.

• Protocol must ensure leader is one with newest data.

• Quorum replication ensures order cannot be forgotten.

• Controller can reconstruct state by replaying events.

e0e1

x x

Canonical Consensus Mechanism: Limitations

• Fault Tolerance: at least one partition fails during network partitions.

Canonical Consensus Mechanism: Limitations

• Fault Tolerance: at least one partition fails during network partitions.

• Scalability: Worse performance worsens with more controllers.

Canonical Consensus Mechanism: Limitations

• Fault Tolerance: at least one partition fails during network partitions.

• Scalability: Worse performance worsens with more controllers.

• Control Plane Requirements: Performance is sensitive to losses, latency, etc.

Is consensus required?

Consensus Assumption

• Network state (topology and forwarding table) resides in controllers.

Consensus Assumption

• Network state (topology and forwarding table) resides in controllers.

• RSMs ensure network state is not lost when controllers fail.

Consensus Assumption

• Network state (topology and forwarding table) resides in controllers.

• RSMs ensure network state is not lost when controllers fail.

• Similar to distributed key value stores.

Consensus Assumption is Wrong

But we can query the network to discover current network state.

Consensus Assumption is Wrong

But we can query the network to discover current network state.

Safe to lose network state!

Distributed Controllers: An Alternative

• Assume all controllers agree on policy.

Network

Controller
Policy

Controller
Policy

Distributed Controllers: An Alternative

• Assume all controllers agree on policy.

• Each controller

Network

Controller
Policy

Controller
Policy

Distributed Controllers: An Alternative

• Assume all controllers agree on policy.

• Each controller

1.Periodically queries network state.

Network

1 1

Controller
Policy

Controller
Policy

Distributed Controllers: An Alternative

• Assume all controllers agree on policy.

• Each controller

1.Periodically queries network state.

2.Uses state and policy to compute updates.

Network

1 1

Controller
Policy

Controller
Policy

2. Compute Updates 2. Compute Updates

Distributed Controllers: An Alternative

• Assume all controllers agree on policy.

• Each controller

1.Periodically queries network state.

2.Uses state and policy to compute updates.

3.Installs updates in the network.Network

1 1

Controller
Policy

Controller
Policy

2. Compute Updates 2. Compute Updates

3 3

Distributed Controllers: An Alternative

• Assume all controllers agree on policy.

• Each controller

1.Periodically queries network state.

2.Uses state and policy to compute updates.

3.Installs updates in the network.

• Converges assuming quiescence.

Network

1 1

Controller
Policy

Controller
Policy

2. Compute Updates 2. Compute Updates

3 3

Challenges
• Programming model: how to write control applications?

Challenges
• Programming model: how to write control applications?

• Programming model: how to support existing event based algorithms?

Challenges
• Programming model: how to write control applications?

• Programming model: how to support existing event based algorithms?

• Efficiency: how to minimize control traffic?

Challenges
• Programming model: how to write control applications?

• Programming model: how to support existing event based algorithms?

• Efficiency: how to minimize control traffic?

• Safety: how to ensure some critical policies are never violated?

Challenges
• Programming model: how to write control applications?

• Programming model: how to support existing event based algorithms?

• Efficiency: how to minimize control traffic?

• Safety: how to ensure some critical policies are never violated?

• Safety: how to safely update network policies?

Challenges
• Programming model: how to write control applications?

• Programming model: how to support existing event based algorithms?

• Efficiency: how to minimize control traffic?

• Safety: how to ensure some critical policies are never violated?

• Safety: how to safely update network policies?

• Policies: what classes of policies can be implemented using this mechanism?

Challenges
• Programming model: how to write control applications?

• Programming model: how to support existing event based algorithms?

• Efficiency: how to minimize control traffic?

• Safety: how to ensure some critical policies are never violated?

• Safety: how to safely update network policies?

• Policies: what classes of policies can be implemented using this mechanism?

SCL: Programming Model and Architecture

Switch
Agent

Single-Image
Controller

Proxy

Single-Image
Controller

Proxy

Single-Image
Controller

Proxy

Switch
Agent

Switch
Agent

Switch
Agent

SCL: Programming Model and Architecture

• Builds on standard single-image controller (Pox).

Switch
Agent

Single-Image
Controller

Proxy

Single-Image
Controller

Proxy

Single-Image
Controller

Proxy

Switch
Agent

Switch
Agent

Switch
Agent

SCL: Programming Model and Architecture

• Builds on standard single-image controller (Pox).

• Switch Agents implement querying and channels.

Switch
Agent

Single-Image
Controller

Proxy

Single-Image
Controller

Proxy

Single-Image
Controller

Proxy

Switch
Agent

Switch
Agent

Switch
Agent

Proxy Proxy Proxy

Agent Agent Agent Agent

SCL: Programming Model and Architecture

• Builds on standard single-image controller (Pox).

• Switch Agents implement querying and channels.

• Controller Proxies ensure convergence.
Switch
Agent

Single-Image
Controller

Proxy

Single-Image
Controller

Proxy

Single-Image
Controller

Proxy

Switch
Agent

Switch
Agent

Switch
Agent

Proxy Proxy Proxy

Agent Agent Agent Agent

SCL Controller Requirements

• Deterministic: Controllers compute the same rule for given network state.

SCL Controller Requirements

• Deterministic: Controllers compute the same rule for given network state.

• Idempotent: The process of computing and updating rules is idempotent.

SCL Controller Requirements

• Deterministic: Controllers compute the same rule for given network state.

• Idempotent: The process of computing and updating rules is idempotent.

• Proactive Applications: Compute rules based on network state not packet-ins.

SCL Controller Requirements

• Deterministic: Controllers compute the same rule for given network state.

• Idempotent: The process of computing and updating rules is idempotent.

• Proactive Applications: Compute rules based on network state not packet-ins.

• Triggered Updates: Can trigger rule recomputation based on event log.

SCL Proxies and Controllers

AgentAgent Agent

Controller

Proxy

Switch A Switch B Switch C

A Table B Table C Table A Table B Table C Table

SCL Proxies and Controllers
• Proxies maintain a log of all prior network events.

AgentAgent Agent

Controller

Proxy

Switch A Switch B Switch C

A Table B Table C Table A Table B Table C Table

SCL Proxies and Controllers
• Proxies maintain a log of all prior network events.

• All switch events are sent to all proxies.

AgentAgent Agent
e0

Controller

Proxy

Switch A Switch B Switch C

A Table B Table C Table

e0

A Table B Table C Table

e0

SCL Proxies and Controllers
• Proxies maintain a log of all prior network events.

• All switch events are sent to all proxies.

• Proxy triggers controller computation.

AgentAgent Agent
e0

Controller

Proxy

Switch A Switch B Switch C

A Table B Table C Table

e0

A Table B Table C Table

e0

e0 e0

SCL Proxies and Controllers
• Proxies maintain a log of all prior network events.

• All switch events are sent to all proxies.

• Proxy triggers controller computation.

• Computation based on current log.

AgentAgent Agent
e0

Controller

Proxy

Switch A Switch B Switch C

A Table B Table C Table

e0

A Table B Table C Table

e0

e0 e0u0

SCL Proxies and Controllers
• Proxies maintain a log of all prior network events.

• All switch events are sent to all proxies.

• Proxy triggers controller computation.

• Computation based on current log.

• Controller sends updates to proxy.AgentAgent Agent
e0

Controller

Proxy

Switch A Switch B Switch C

A Table B Table C Table

e0

A Table B Table C Table

e0

e0 e0

u0

SCL Proxies and Controllers
• Proxies maintain a log of all prior network events.

• All switch events are sent to all proxies.

• Proxy triggers controller computation.

• Computation based on current log.

• Controller sends updates to proxy.

• Proxy maintains state about installed rules.

AgentAgent Agent
e0

Controller

Proxy

Switch A Switch B Switch C

A Table B Table C Table

e0

A Table B Table C Table

e0

e0 e0

u0

SCL Proxies and Controllers
• Proxies maintain a log of all prior network events.

• All switch events are sent to all proxies.

• Proxy triggers controller computation.

• Computation based on current log.

• Controller sends updates to proxy.

• Proxy maintains state about installed rules.

• Deduplicates updates before applying them.

AgentAgent Agent
e0

Controller

Proxy

Switch A Switch B Switch C

A Table B Table C Table

e0

A Table B Table C Table

e0

e0 e0

u0

SCL Proxies and Controllers: Challenges

• Agreement: Proxies must eventually agree on order.

Time

Switch A

Switch B

e0

e1

e1 e0Proxy I

Proxy II e0 e1

SCL Proxies and Controllers: Challenges

• Agreement: Proxies must eventually agree on order.

• Agreement: Must eventually agree on the set of events.

Time

Switch A

Switch B

e0

e1

e1Proxy I

Proxy II e0 e1

SCL Proxies and Controllers: Challenges

• Agreement: Proxies must eventually agree on order.

• Agreement: Must eventually agree on the set of events.

• Awareness: Controllers and network state agrees eventually.

Time

Switch A

Switch B

e0

e1

Proxy I

Proxy II e0

e0

Addressing SCL Challenges

• Address these with two mechanisms.
Controller

Proxy
Controller

Proxy

Agent Agent

Addressing SCL Challenges

• Address these with two mechanisms.

• Gossip between controllers
Controller

Proxy
Controller

Proxy
Gossip

Logged events
Ordering

Agent Agent

Addressing SCL Challenges

• Address these with two mechanisms.

• Gossip between controllers

• Eventual agreement on observed events.

Controller
Proxy

Controller
Proxy

Gossip

Logged events
Ordering

Agent Agent

Addressing SCL Challenges

• Address these with two mechanisms.

• Gossip between controllers

• Eventual agreement on observed events.

• Also assures agreement on ordering.

Controller
Proxy

Controller
Proxy

Gossip

Logged events
Ordering

Agent Agent

Addressing SCL Challenges

• Address these with two mechanisms.

• Gossip between controllers

• Eventual agreement on observed events.

• Also assures agreement on ordering.

• Periodically query network for state.

Controller
Proxy

Controller
Proxy

Gossip

Agent Agent

Periodic
Refresh

Link State
Routing Table

Addressing SCL Challenges

• Address these with two mechanisms.

• Gossip between controllers

• Eventual agreement on observed events.

• Also assures agreement on ordering.

• Periodically query network for state.

• Awareness of network state.

Controller
Proxy

Controller
Proxy

Gossip

Agent Agent

Periodic
Refresh

Link State
Routing Table

Why abandon consensus?

Conceptually Unnecessary

• RSM assumption: Truth about network lies in the controller.

Conceptually Unnecessary

• RSM assumption: Truth about network lies in the controller.

• Reality: Truth about the network lies within the network (dataplane).

Conceptually Unnecessary

• RSM assumption: Truth about network lies in the controller.

• Reality: Truth about the network lies within the network (dataplane).

• Packets are processed by dataplane not by controllers.

Improves Performance and Resilience

Consensus

SCL

Improves Performance and Resilience

Responsiveness

Consensus

SCL

Improves Performance and Resilience

Responsiveness

At least 1 RTT
between controllersConsensus

SCL

Improves Performance and Resilience

Responsiveness

At least 1 RTT
between controllers

Respond immediately

Consensus

SCL

Improves Performance and Resilience

Responsiveness Scalability

At least 1 RTT
between controllers

Respond immediately

Consensus

SCL

Improves Performance and Resilience

Responsiveness Scalability

At least 1 RTT
between controllers

Latency increases
with participants

Respond immediately

Consensus

SCL

Improves Performance and Resilience

Responsiveness Scalability

At least 1 RTT
between controllers

Latency increases
with participants

Respond immediately Does not increase
with # of
participants

Consensus

SCL

Improves Performance and Resilience

Responsiveness Scalability Fault Tolerance

At least 1 RTT
between controllers

Latency increases
with participants

Respond immediately Does not increase
with # of
participants

Consensus

SCL

Improves Performance and Resilience

Responsiveness Scalability Fault Tolerance

At least 1 RTT
between controllers

Latency increases
with participants

Quorum must be
available for progress

Respond immediately Does not increase
with # of
participants

Consensus

SCL

Improves Performance and Resilience

Responsiveness Scalability Fault Tolerance

At least 1 RTT
between controllers

Latency increases
with participants

Quorum must be
available for progress

Respond immediately Does not increase
with # of
participants

Functional as long as
a controller is available

Consensus

SCL

What about Route Convergence?

Convergence time in AS1221

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

CD
F

Convergence Time (S)

SCL Consensus

What about Route Convergence?

Convergence time in AS1221

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

CD
F

Convergence Time (S)

SCL Consensus

Convergence time for fat tree

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

CD
F

Convergence Time (ms)

SCL Consensus

When Does Everyone Agree?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

CD
F

Convergence Time (S)

SCL
Consensus

Convergence time in AS1221

When Does Everyone Agree?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

CD
F

Convergence Time (S)

SCL
Consensus

Convergence time in AS1221

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22

CD
F

Convergence Time (ms)

SCL
Consensus

Convergence time in Fat Tree

In the Paper

• Proof that gossip and periodic update are sufficient to guarantee convergence.

• Broadcast based in-band control channels.

• Mechanisms for policy update.

• Interaction with other types of policies.

• Other performance results.

Related Work
Control Plane Consistency Data Plane Consistency (Orthogonal)

Related Work
Control Plane Consistency Data Plane Consistency (Orthogonal)

Serializability

Consensus: ONIX (OSDI’10), ONOS

Related Work
Control Plane Consistency Data Plane Consistency (Orthogonal)

Atomic registers: Schiff et al (CCR’16)

Serializability

Consensus: ONIX (OSDI’10), ONOS

Related Work
Control Plane Consistency Data Plane Consistency (Orthogonal)

Atomic registers: Schiff et al (CCR’16)

Serializability

Consensus: ONIX (OSDI’10), ONOS

Exactly-Once: Ravana (SOSR’15)
Stronger Semantics

Related Work
Control Plane Consistency Data Plane Consistency (Orthogonal)

Atomic registers: Schiff et al (CCR’16)

Serializability

Consensus: ONIX (OSDI’10), ONOS

Exactly-Once: Ravana (SOSR’15)
Stronger Semantics

Labels: Reitblatt et al. (SIGCOMM ’12)

Ordered Updates:
Mahajan et al. (HotNets ’13)
McClurg et al. (PLDI ’15)

Synchronized Clocks:
Mirzahi et al. (SOSR ’15)

Conclusion
• Conventional wisdom: Distributed SDN controllers need consensus.

Conclusion
• Conventional wisdom: Distributed SDN controllers need consensus.

• This talk: no consensus required.

Conclusion
• Conventional wisdom: Distributed SDN controllers need consensus.

• This talk: no consensus required.

• Can use existing single image controllers with SCL.

Conclusion
• Conventional wisdom: Distributed SDN controllers need consensus.

• This talk: no consensus required.

• Can use existing single image controllers with SCL.

• Implication

Conclusion
• Conventional wisdom: Distributed SDN controllers need consensus.

• This talk: no consensus required.

• Can use existing single image controllers with SCL.

• Implication

• Simplifies controllers.

Conclusion
• Conventional wisdom: Distributed SDN controllers need consensus.

• This talk: no consensus required.

• Can use existing single image controllers with SCL.

• Implication

• Simplifies controllers.

• Improves convergence time, responsiveness, robustness.

