

Improving User Perceived Page Load Time using Gaze

<u>Conor Kelton</u>⁺, Jihoon Ryoo⁺, Aruna Balasubramanian, Samir R. Das ⁺Students with equal contribution

Motivation

- Websites exploding in number! (Over 1.1 B today)
- Performance of these sites is important:
 - Google Uses Page Speed as major ranking factor
 - Amazon Reports \$1.6 B in profit per 1 second decrease in site load time

Stony Brook University

 If true, then the effect of optimizations on user Quality of Experience (QoE) is uncertain

Does Window.OnLoad() capture the user's experience?

Loading stonybrooknetsys@gmail.com.

oading standard view i Load basic HTM, Ifor slow con

Amazon.com: 1.5s (ATF Loaded)

Gmail.com: 0.9 s (OnLoad)

Gmail.com: 5.1s (ATF Loaded)

. . .

Similar Mismatches of user QoE to other PLT metrics such as **Speed Index**, and **DOMContentLoaded**.

The uPLT: user-perceived Page Load Time

• How to determine if users are actually experiencing this disconnect?

Real User Studies!

The uPLT User Study Logistics

• Consistency:

- Website loads shown as **videos** to the user
- Quality:
 - Measure user's reaction times
 - Filter out erroneous responses

User Study Results: uPLT Spread

 Narrow spread in 25th - 75th %tiles shows consensus among users

User Study Results: OnLoad vs uPLT

OnLoad uPLT(median) 43.7→44+100.3 4 ← 56.3 30 time (s) 20 • 10 0 10 20 30 40 0 webpages

 OnLoad indeed over-to-under estimating user experience

Stony Brook University

uPLT Results in the Wild

• Overall Observation:

Stony Brook University

Corr(uPLT, OnLoad) = .46

Corr(uPLT, Speed Index) = .44

 Additional analyses across site categories/ network conditions in paper

Our Goal: Optimize Web loads for uPLT

• Intuition: Loading objects important to users first should improve

the user experience

• How to find objects important to the user?

Leveraging Gaze Tracking

Software Aided Commodity Webcam Tracking

- User Eye Gaze has been used to track user attention
- Low cost, personalized, gaze tracking becoming feasible

Gaze Collection and User Study

- Like uPLT, Gaze also captured during real user studies!
- Webcam based tracker
- 50+ Lab participants, same 45 Web sites as uPLT study
- Goal: To find attention on Web objects from user Gaze tracks

Human Gaze consists of rapid *saccades* interspersed with stable *fixations* which mark points of user attention

- Human Gaze consists of rapid saccades interspersed with stable fixations which mark points of user attention
- Plotting fixations over the page captures a user's attention

- Human Gaze consists of rapid *saccades* interspersed with stable *fixations* which mark points of user attention
- Plotting fixations over the page captures a user's attention

- Human Gaze consists of rapid *saccades* interspersed with stable *fixations* which mark points of user attention
- Plotting fixations over the page captures a user's attention

- Human Gaze consists of rapid saccades interspersed with stable fixations which mark points of user attention
- Plotting fixations over the page captures a user's attention

• Fixations overlap across users

Gaze: Collective Fixation

- First Divide Web page into its Visual Regions
- Map the fixations of all users onto the visual regions
- Collective Fixation is the fraction of users who fixate on a region

Combining Collective Fixation Results

Prioritization Details: Webpage Dependencies

• Web page objects exhibit object *dependencies* on one another

• WebGaze finds and prioritizes these dependencies

Stony Brook University

- WebGaze pushes objects of high Collective Fixation and their dependencies with HTML
- HTTP/2 is Multiplexed: Resources will contest for bandwidth
- WebGaze Pushes only objects above a Collective Fixation Threshold

WebGaze User Study Implementation

- Download same 45 pages from uPLT study locally
- Serve from HTTP/2 Push enabled Web server
- Take videos of Website loads
- Host videos on **Microworkers to obtain uPLT** from real users

WebGaze Evaluation Comparisons

<u>Default</u>

No Prioritization

Default under HTTP/2

Push All

Pushes all resources identified in the page load

<u>Klotski</u> [NSDI '15]

Pushes all objects that can be loaded in a static user tolerance limit (5 seconds)

State of the art prioritization

WebGaze: Demonstration

Default

Klotski

WebGaze

Push-All

26

Default: 12 seconds Push-All: 10 seconds

Stony Brook University

Klotski: 9 seconds WebGaze: 7 seconds

Freeze frame of load process at 6 seconds

WebGaze: Performance Results

WebGaze: Performance Results

 Delivering objects identified by gaze early does help!

WebGaze: Performance Results

 Delivering objects identified by gaze early does help!

WebGaze: Performance Results

 Delivering objects identified by gaze early does help!

WebGaze: Performance Results

- Delivering objects identified by gaze early does help!
- Case studies and comparisons to PLT metrics in the paper

WebGaze: Why We Do Better

- uPLT Improvements over Default come from general prioritization
- uPLT Improvements over Push-all come from **ATF prioritization**
- uPLT Improvements over Klotski come from prioritizing the right set of ATF objects

Stony Brook University

• Comparing to Push-All: Pushing everything sometimes works!

• Comparing to Klotski: Klotski thresholds objects, preventing worst case push performances

WebGaze: Where to?

• Formally optimize the trade off between collective fixation and object size at the Webgaze Servers

• Using saliency to predict gaze, i.e. automatic gaze feedback

• WebGaze for Mobile

Conclusion

Webgaze

- www.gaze.cs.stonybrook.edu
- uPLT Results Low Correlation with Traditional PLT Metrics
- Gaze Data Subset of Web Objects Viewed Significantly!
- Side By Side Loads of Optimized Sites uPLT Improvements up to 64%
- More Work to Come!

A Visually Oriented Metric: The Speed Index

Stony Brook University

Marketwatch.com: 14.5s (Speed Index)

Marketwatch.com: 7.5s (Most ATF Rendered)

Energystar.gov: 3.7s (Speed Index)

> Energystar.gov: 7.8s (ATF Rendered)

Speed Index vs. uPLT in the Wild

 Speed Index also not trending well with user experience

WebGaze: Performance Results

Delivering objects identified by gaze early does help!

WebGaze: Performance Results

- Delivering objects identified
 by gaze early does help!
- Case studies and comparisons to PLT metrics in the paper