
mOS: A Reusable Networking Stack for

Flow Monitoring Middleboxes

M. Asim Jamshed, YoungGyoun Moon, Donghwi Kim,

Dongsu Han, KyoungSoo Park

47%

63%

67%

0% 25% 50% 75%

Web security gateway

Mail security gateway

Web application firewall

Virtual Appliances Deployed in Service Provider Data Centers

Most Middleboxes Deal with TCP Traffic

• TCP dominates the Internet

• 95+% of traffic is TCP

• Top 3 middleboxes in service providers rely on L4/L7 semantics

2

[1]
TCP

UDP

etc

[1] “Comparison of Caching Strategies in Modern Cellular Backhaul Networks”, ACM MobiSys 2013.

95.7%

[2] IHS Infonetics Cloud & Data Center Security Strategies & Vendor Leadership: Global Service Provider Survey, Dec. 2014.

[2]

• Custom middlebox application

• No open source solution

3

Data Accounting System

Cellular Core Network

Internet

Example: Cellular Accounting System

Client

$ $

Challenges in Building Flow-level Middleboxes

4

• The main logic for a cellular accounting system

• No charge for TCP retransmission, only if payloads match.

For every IP packet, p
p is retransmitted

no yes

p’s payload == original payload charge for p

yes

skip accounting TCP tunneling attack!

no

Core logic itself is straightforward!

payload A seq# = 10

seq# = 10

payload A seq# = 10

payload B seq# = 10

$

payload B

Challenges in Building Flow-level Middleboxes

5

• Requires handling complex flow-level states and events

• The accounting system requires:

• Reassembly buffer that holds the original payload

• Non-contiguous fragments that holds the original payload

• Event notification on TCP retransmission

• Storage for per-flow accounting metadata and statistics

Challenges in Building Flow-level Middleboxes

• How to implement flow-processing features beneath its core

logic?

6

• 50K~100K code lines tightly coupled
with their IDS logic

Borrow code from open-source
IDS (e.g., snort, suricata)

• Designed for TCP end host

• Different from middlebox semantics

Borrow code from open-source
kernel (e.g., Linux/FreeBSD)

• Complex and error-prone

• Repeat it for every custom middlebox

Implement your own
flow management code

Difference from End-host TCP Applications

• Typical end-host TCP applications

• Typical flow-processing middleboxes

7

TCP application

Berkeley Socket API

TCP/IP stack

→ Nice abstraction that separates TCP/IP stack

from application

Middlebox application
+

Flow-processing logic

Packet I/O stack

→ Developers build own flow-processing logic

from scratch (e.g., on top of PCAP, DPDK, PF_RING)

Our Goal

Build a reusable flow-processing networking stack

for modular development of middleboxes

mOS Networking Stack

8

• A reusable stack for flow-processing middleboxes

• Abstraction for sub-TCP layer middlebox operations

• Exposes programming abstractions

• Monitoring sockets abstracting TCP flows

• Flexible event system

• Fine-grained resource usage

• Benefits

• Clean, modular development of stateful middleboxes

• Developers focus on core logic rather than flow management

• Highly scalable on multi-10Gbps networks

Middlebox application

mOS programming API

Flow-processing logic

Key Programming Abstractions in mOS

9

• For better reusability, mOS encourages decomposing a

complex application into a set of <event, event handler> pairs

• One can share a well-designed set of event definitions

• mOS provides two key programming abstractions:

• mOS events for expressing custom flow-level conditions

• mOS sockets for retrieving comprehensive flow-level features

 mOS event

Event handler

 mOS socket

invokes

retrieve flow state

Flow-processing logic

• Notable condition that merits middlebox processing

• Built-in event (BE)

• Events that happen naturally in TCP processing

• e.g., packet arrival, TCP connection start/teardown, retransmission

• User-defined event (UDE)

• User can define their own event (= base event + filter function)

Key Abstraction: mOS Events

10

New data

arrival

Packet

arrival

Filter
(HTTP request)

Built-in event

Filter
(ACK packet)

HTTP request

arrival

ACK packet

arrival

User-defined event

Filter
(counter)

3 duplicate

ACK arrival

User-defined event

• Abstracts a non-terminating midpoint of a ongoing connection

• Simultaneously manages the flow states of both end-hosts

• For every incoming flow, a new mOS monitoring socket is created

• To monitor fine-grained TCP-layer operations and metadata

• e.g., abnormal packet retransmission, out-of-flow packet arrival,

abrupt connection termination, employment of weird TCP/IP options

• Read flow-reassembled data or non-contiguous fragments

• Modify/drop the last packet that raised the event

Key Abstraction: mOS Monitoring Socket

11

peek TCP-layer buffer Application buffer

modification drop

mOS Flow Management

12

• Dual TCP stack management

• Infer the states of both client and server TCP stacks

mOS stack emulation

TCP server

Server side

TCP stack

Server side

TCP stack

TCP

state

TCP

state

SYN

LISTEN

CLOSED SYN_SENT

Client side

TCP stack

Client side

TCP stack

TCP

state

TCP

state

SYN_RCVD

ESTABLISHED

ESTABLISHED

TCP client

mOS Flow Management

13

• Dual TCP stack management

• Infer the states of both client and server TCP stacks

mOS stack emulation

TCP server

Server side

TCP stack

Server side

TCP stack

TCP

state

TCP

state

SYN

SYN/ACK

LISTEN

CLOSED SYN_SENT

Client side

TCP stack

Client side

TCP stack

TCP

state

TCP

state

SYN_RCVD

ESTABLISHED

ESTABLISHED

TCP client

mOS Flow Management

14

• Dual TCP stack management

• Infer the states of both client and server TCP stacks

mOS stack emulation

TCP server

Server side

TCP stack

Server side

TCP stack

TCP

state

TCP

state

SYN

SYN/ACK

LISTEN

CLOSED SYN_SENT

Client side

TCP stack

Client side

TCP stack

TCP

state

TCP

state

SYN_RCVD

ESTABLISHED

DATA/ACK

Receive

buffer

Receive

buffer

ESTABLISHED

TCP client

Scalable mOS Event Management

15

• Each flow can register/change its own set of events dynamically

• Some flows may add or delete events

• Some flows may change event handlers for registered events

• Scalability problem

• How to efficiently manage event sets for 100K+ concurrent flows?

• Naïve approach suffers from expensive copying of event sets

• Observation: the same event sets are shared by multiple flows

• Reduces management overhead

Challenge

How to efficiently find/share the same event set?

Data Structures for Event Management

16

• Each socket points to an event invocation forest that records

a set of flow events to wait on

s1
Socket

e1 ON_CONN_NEW_DATA

YouTube_event

http_event ftp_event

OnYouTubeRequest()

OnFTPEvent()

Event invocation forest

e2

e4 e5

e3

f1

f4 f5

IF1

e6

e7

f7

built-in event UDE event handler socket

Dynamic Event Registration Process

17

Naïve way

1. s1 registers a new event <e3, f3> IF1 is created

2. s2 also registers the same event <e3, f3> IF2 is created

s1

built-in event UDE event handler socket

s2

e1

e2 e3

f2 f3

e4

e6

f6

IF2

e5

e1

e2 e3

f2 f3

e4

e6

f6

IF1

e5

e1

e2

f2

e4

e6

f6

IF0

e5

Problem

IF1 and IF2 are redundant!

Alternative

To reuse IF1 for s2

 How does s2 find IF1?

Efficient Search for Dynamic Registration

18

• Each event invocation forest has an ID (searchable via hashtable)

• id (invocation forest) = XOR sum of hash (event + event handler)

• New invocation forest id after adding or deleting <e, f> from t

• id (new forest) = id (old forest) ⊕ hash (e + f)

s1 s2

e1

e2 e3

f2 f3

e4

e6

f6

IF1

e5

e1

e2

f2

e4

e6

f6

IF0

e5

Efficient Search for Dynamic Registration

19

• Each event invocation forest has an ID (searchable via hashtable)

• id (invocation forest) = XOR sum of hash (event + event handler)

• New invocation forest id after adding or deleting <e, f> from t

• id (new forest) = id (old forest) ⊕ hash (e + f)

s1 s2

e1

e2 e3

f2 f3

e4

e6

f6

IF1

e5

e1

e2

f2

e4

e6

f6

IF0

e5

s1 registers a new event <e3, f3>

id(IF0) ⊕ h(e3+f3) = id(IF1)
shared

Efficient Search for Dynamic Registration

20

• Each event invocation forest has an ID (searchable via hashtable)

• id (invocation forest) = XOR sum of hash (event + event handler)

• New invocation forest id after adding or deleting <e, f> from t

• id (new forest) = id (old forest) ⊕ hash (e + f)

s1 s2

e1

e2 e3

f2 f3

e4

e6

f6

IF1

e5

e1

e2

f2

e4

e6

f6

IF0

e5

shared

s2 unregisters the event <e3, f3>

id(IF1) ⊕ h(e3+f3) = id(IF0)

Efficient Search for Dynamic Registration

21

• Each event invocation forest has an ID (searchable via hashtable)

• id (invocation forest) = XOR sum of hash (event + event handler)

• New invocation forest id after adding or deleting <e, f> from t

• id (new forest) = id (old forest) ⊕ hash (e + f)

s1 s2

e1

e2 e3

f2 f3

e4

e6

f6

IF1

e5

e1

e2

f2

e4

e6

f6

IF0

e5

s1 unregisters the event <e3, f3>

id(IF1) ⊕ h(e3+f3) = id(IF0)

shared

Fine-grained Resource Management in mOS

• Not all middleboxes require full features

• Some middleboxes do not require flow reassembly

22

TCP

client

TCP

server

Client side

TCP stack

Client side

TCP stack

Receive

buffer

Receive

buffer

TCP

state

TCP

state

P

P

Server side

TCP stack

Server side

TCP stack

Receive

buffer

Receive

buffer

TCP

state

TCP

state

Fine-grained Resource Management in mOS

• Not all middleboxes require full features

• Some middleboxes do not require flow reassembly

• Some middleboxes monitor only client-side data

23

TCP

client

TCP

server

Client side

TCP stack

Client side

TCP stack

Receive

buffer

Receive

buffer

TCP

state

TCP

state

P

P

Server side

TCP stack

Server side

TCP stack

Receive

buffer

Receive

buffer

TCP

state

TCP

state

Fine-grained Resource Management in mOS

• Not all middleboxes require full features

• Some middleboxes do not require flow reassembly

• Some middleboxes monitor only client-side data

• No more monitoring after handling certain events

24

TCP

client

TCP

server

Client side

TCP stack

Client side

TCP stack

Receive

buffer

Receive

buffer

TCP

state

TCP

state

P

P

Server side

TCP stack

Server side

TCP stack

Receive

buffer

Receive

buffer

TCP

state

TCP

state

Global or per-flow

manipulation

• Per-thread library TCP stack

• ~26K lines of C code (mTCP [1] : ~11K lines)

• Shared nothing parallel architecture

mOS Stack Implementation

25

NIC

Packet I/O

Application

mOS core

Receiver

TCP stack

Sender

TCP stack

Rx

Application

mOS core

Tx

....

CPU core N CPU core 1

Symmetric RSS

[1] “mTCP: a highly scalable user-level TCP stack for multicore systems”, NSDI'14

Evaluation

26

1. Does mOS API support diverse middlebox applications?

2. Does mOS promise high performance?

mOS API Evaluation

27

• Does the API support diverse range of middleboxes?

• Snort3 (strip ~10K lines)

• Snort with mOS flow management

• Replaces HTTP/TCP inspection module

• nDPI

• L7 protocol parsing over flow content

• PRADS

• Signature pattern matching on flow content

• Lessons learnt

• mOS simplifies code

• mOS patches vulnerabilities (nDPI/PRADS)

• Detects signature that spans multiple segments

• mOS does not degrade performance

• Perform on par with respective vanilla (DPDK) versions

2104

765

615

0K

20K

40K

60K

80K

100K

Snort3 nDPI PRADS

Lines Modified

Total Lines

mOS API Evaluation (cont.)

28

• Does the API support diverse range of middleboxes?

• Halfback proxy (128 lines)

• Low latency proxy with proactive TCP retransmissions

• Abacus (561 lines vs 4,091 lines)

• Secure cellular data accounting system

• Parallel NAT

• High performance NAT

• Midstat

• netstat for middleboxes

• L4 firewall

• Etc.

• Applications ported to mOS: ~9x code line reduction

Performance Evaluation

• mOS applications in inline mode

• Flow management and forwarding packets by their flows

• 2 x Intel E5-2690 (16 cores, 2.9 GHz), 20 MB L3 cache size,

• 132 GB RAM, 6 x 10 Gbps NICs

• Six pairs of clients and servers: 60 Gbps max

• Intel E3-1220 v3 (4 cores, 3.1 GHz), 8 MB L3 cache size

• 16 GB RAM, 1 x 10 Gbps NIC per machine

29

• Does mOS provide high performance?

mOS

applications

6 x 10Gbps 6x 10Gbps

Clients Servers

Performance Scalability on Multicores

30

1.4 1.2
4.1 3.2 5.0 4.5

16.7
11.6

22.8 21.7

53.0

42.5

0

10

20

30

40

50

60

 1 4 16 1 4 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

(# of CPU cores)

Counting packets Searching for a string

64B file 8KB file

 File download traffic with 192K concurrent flows

• Each flow downloads an X-byte content in one TCP connection

• A new flow is spawned when a flow terminates

 Two simple applications

• Counting packets per flow (packet arrival event)

• Searching for a string in flow reassembled data (full flow reassembly & DPI)

 1 4 16 1 4 16

Performance Scalability on Multicores

31

1.4 1.2
4.1 3.2 5.0 4.5

16.7
11.6

22.8 21.7

53.0

42.5

0

10

20

30

40

50

60

 1 4 16 1 4 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

(# of CPU cores)

Counting packets Searching for a string

64B file 8KB file

 File download traffic with 192K concurrent flows

• Each flow downloads an X-byte content in one TCP connection

• A new flow is spawned when a flow terminates

 Two simple applications

• Counting packets per flow (packet arrival event)

• Searching for a string in flow reassembled data (full flow reassembly & DPI)

 1 4 16 1 4 16

Performance linearly scales as

of cores are increased.

Latency overhead by mOS applications

32

58.4

93.8 93.5

117.4

191.9 193.2

0

50

100

150

200

250

Direct connection Counting packets Searching for a string

F
lo

w
 c

o
m

p
le

ti
o

n
 t

im
e
 (

u
s
) 64B file 8KB file

76us

35us

Dynamic Event Registration Evaluation

33

• Monitor 192K concurrent flows

• Flow size: 4KB

• Searching for a string in flow reassembled data

• Dynamically register a new event when target string found

• 50% client flows have target strings

18.1

12.5
8.9

5.9
3.2

0.6

34.1 33.7 33.7 32.8 31.5

27.4

0

10

20

30

40

32 64 128 256 512 1024

Naïve mOS

of event nodes in the tree

T
h
ro

u
g
h
p
u
t

(G
b
p
s
)

• Software-based middleboxes have:

• Modularity issues

• Readability issues

• Maintainability issues

 mOS stack: reusable networking stack for middleboxes

• Programming abstraction with socket-based API

• Event-driven middlebox processing

• Efficient resource usage with dynamic resource composition

• mOS stack/API available @:

https://github.com/ndsl-kaist/mOS-networking-stack

Conclusion

34

https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack

Thank You

35

http://mos.kaist.edu/

Questions?

https://github.com/ndsl-kaist/mOS-networking-stack

http://mos.kaist.edu/
http://mos.kaist.edu/
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack
https://github.com/ndsl-kaist/mOS-networking-stack

Appendix

Extra Slides

Performance under Selective Resource Consumption

38

19.67

23.22

35.47

39.22

56.68

29.6
34.18

46.43

51.9

0

10

20

30

40

50

60

 64 256 1K 4K 16K

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

File size (B)

full flow management

w/o client buf management

w/o buf management

w/o client side

w/o client side, w/o server buf mgmt.

59.97

Real applications performance

39

Application original + pcap original + DPDK mOS port

Snort-AC 0.57 Gbps 8.18 Gbps 9.17 Gbps

Snort-DFC 0.82 Gbps 14.42 Gbps 15.21 Gbps

nDPIReader 0.66 Gbps 28.92 Gbps 28.87 Gbps

PRADS 0.42 Gbps 2.03 Gbps 1.90 Gbps

• Workload: real LTE packet trace (~67 GB)
• 4.5x ~ 28.9x performance improvement
• mOS brings code modularity & correct flow management

Events & Available Hooks

40

• Stream monitoring socket

• Raw monitoring socket

Built-in event MOS_HK_SND MOS_HK_RCV

MOS_ON_PKT_IN O O

MOS_ON_CONN_START O O

MOS_ON_CONN_END O O

MOS_ON_TCP_STATE_CHANGE O O

MOS_ON_REXMIT O O

MOS_ON_CONN_NEW_DATA X X

MOS_ON_ORPHAN X X

Built-in event MOS_HK_SND MOS_HK_RCV

MOS_ON_PKT_IN X X

Cellular Accounting with mOS Networking Stack

41

Core Logic +
Flow Mgmt

For every IP packet, p
p is retransmitted

no yes

p’s payload == original payload account for p

yes

skip accounting report abuse

no

Event-action

eREX MOS_ON_REXMIT

eNEW MOS_ON_CONN_NEW_DATA

eREX eNEW

FFAKE

eFAKE

freport faccnt

Filter

Built-in events

User-defined event

Event handler
(action)

FFAKE IsFakeRexmit()

eFAKE UDE_FAKE_REXMIT

freport ReportAbuse()

faccnt AccountDataUsage()

4,639
LoC

561
LoC

built-in event UDE event handler filter function FFAKE

