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From Orthogonal Transmissions to
Mutually Interfering Transmissions

Orthogonal approaches like
CSMA and TDMA do not scale
to large number of users

Paradigm Shift:
Allow all users to transmit
concurrently at the same
frequency

New Question: How can we efficiently demultiplex
the intentionally interfering information streams?




From Orthogonal to Mutually Interfering Transmissions
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Linear Detectors (e.g., ZF, MMSE) offer low latency and complexity but can result in
highly suboptimal throughput

Maximum-Likelihood (ML) Detection maximizes throughput but is highly complex

X = min ” @ =4.2x10° possibilities for a 16-QAM 8x8
pOSSIbl (8 clients, 8 AP antennas)

ML detection is a fundamental problem, with special cases solved (e.g., in channel decoding)




Sphere Decoding

A Sphere Decoder transforms the exhaustive search into a tree search:

X =arg min |y’ RX||2

possible x

Each clientisends x; €
a b

Complexity efficient tree search =»
X3 sequentlal processing

Sphere Decoding Goal: Find the distance-minimizing leaf



The Need for Parallelization
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A Parallelization Attempt

, We could achieve minimum latency by
y- HX” performing the Euclidean distance calculations
for each x on a separate PE in parallel.

X =arg min

possible x
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FlexCore’s New Approach

Let’s revisit the maximum-likelihood detection problem:
X

m 2
y—HxH

X = arg min

possible x

Can we identify the most likely data x the users sent:
1. Before we receive any signal y?
2. Only by looking at the channel matrix H?



Primer: Detection and Probability

Assume the transmitted symbol is a:

Gaussian noise
=
y=atn

It is less likely for a be the second-

closest symbol to the received signal.

b a is most likely to be the fir

closest symbol to the received

T TTT T mmmmm e mmmm e mmmm e mmmm signal.

Assume the transmitted symbol is b:




From Absolute to Relative Probabilities

Assume the transmitted symbol is a:

Any transmitted symbol is

the received signal, and to be the

AR ; N4

The corresponding probabilities can be calculated

before we receive any signal



Introducing the Tree of Promise

SNR, =0dB| | | SNR, =5dB

A priori
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81 % 3.5 % 16.4 % 0.1%

We focus processing on half the search space while
retaining the right answer with over 95% probability

When receiving data

1t most promising path 2rd most promising path
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FlexCore’s Tree of Promise

%)
We extend to QAM modulation
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l We extend to interfering streams
ﬁ
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We extend to any number of users

xl : @closest closest @closest
X2 . @closest closest @closest closest @

How do we find the nt" closest symbol? / \
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New Challenge: How do we find the nt® closest symbol ?

4 T T T T T T T
* Exhaustive Distance Calculation
3 OV\\ ‘\ ’ ,'O
\\s AN " o
S N ! /
2 \\\ \\ : /’
\\ \\ 1 ’/
\\ \ I V4
S \ 'l ,’
1 .- . N N 19/ e
........ ~~~~ \\\ 'I,/ ‘————
—_----::5 S _ =T
ot — /";" R
S Réceh/Qd signal
. - ,/, Y} |‘ \\
1 " .::,, // \ \\ e
// Il, II| \\
i ]
) oS '. \ _ Do we have better solutions ?
/’l II ||| \\\
e ! \ \
¢ / \
3 ¢ ¢ b ")
_4 L 1 1 1 1 1 1




New Challenge: How do we find the nt® closest symbol ?
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* 2-D ZigZag [Geosphere, Sigcomm ‘14]

Can we find it without exhaustive

or sequential search?
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FlexCore’s symbol selection

1. Find via s comparisons the square of the
received signal.
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FlexCore’s symbol selection
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FlexCore’s symbol selection
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1. Find via s comparisons the square of the
received signal.

2. Refine received signal to one of eight
possible triangles, via s comparisons.

3. Use approximate pre-defined order for
all the triangles, that is
e storedin a look-up table
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FlexCore’s symbol selection
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Evaluation Questions

1. Is FlexCore’s data throughput elastic with the number of PEs?

2. Does FlexCore offer better throughput and complexity compared to state-of-
the-art approaches [FCSD, TCOM ‘08] of similar latency?

3. Is FlexCore capable of supporting real-time LTE detection on commodity GPUs?

4. Can FlexCore realize energy efficiency gains for a given throughput target?
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FlexCore’s Implementations and Evaluation Methodology

* Implemented FlexCore on FPGA [Verilog], GPU [CUDA/
C], CPU [OpenMP/C].

e Evaluate using over-the-air experiments and channel
trace-driven simulations [Rice, WARPv3].

e Experiments are conducted in an indoor environment
on the 5 GHz ISM band over a 20 MHz bandwidth.

In blue: 8-antenna access points
In green: 12-antenna access points
In red: single-antenna users
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Elasticity of Throughput

Throughput (Mbps)

12x12 MIMO, 64-QAM, 20MHz and PER,,=0.1 (SNR=20.5 dB)

n— ‘ Geosphere Throughput

M
Requires 32x fewer PEs

FlexCore

~ 6.2:10°

real multiplications/sec./PE
Q

FCSD

~ 6.2-10°

real multiplications/sec./PE

N N
4 8 16 32 64 128 256 4096
Number of available Processing Elements

~ 8.6:10%
real multiplications/sec.

‘ MMSE Throughput

~ 1.1-10%0
real multiplications/sec.
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Real Time GPU-based LTE detection

12x12 MIMO, 64-QAM, 20MHz and PER,,=0.1 (SNR=20.5 dB)
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SNR loss (dB)
relative to Geosphere

FlexCore supports real-time MIMO detection for

12x12 LTE systems, using commodity GPUs.
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FlexCore’s Energy Efficiency

12x12 MIMO, 64-QAM, 20MHz and PER,,,=0.1 (SNR=20.5 dB)
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Related Work

Ability to focus Parallelism Interaction between parallel
processing granularity components
Depth-first sphere decoders
[Geosphere, SIGCOMM 14] none limited Very high
[Burg, JSSC '05]
Breath-first sphere decoders o .
[Chen, VLS| '07], none limited Very high
[Guo, JSAC '05]
Fixed Complexity (FCSD) none limited Low
[FCSD, TCOM ‘08]
FlexCore strong high Low

Related systems: Argos [Shepard, MobiCom ‘12], BigStation
[Yang, SIGCOMM ’13] currently employ linear detection schemes
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Conclusion

* FlexCore massively parallelizes the fundamental maximum likelihood
detection problem.

* Focuses processing to scale network throughput, efficiently utilizing any
number of processing elements.

* FlexCore realizes substantial power reduction compared to state-of-the-art.
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