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Storage Overview at Dropbox
• ¾ Media

• Roughly an Exabyte in storage

• Can we save backend space?
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Goals
• High compression
• Byte for byte transparency
• Distributed 4MB chunks
• Fast [Streaming 100 Mbit/s decode]
• Secure
• Trustworthy



Related Work
Comp
ratio

Bit-for-bit Distributed Fast Secure Trustworthy

packJPG ✅ ✅ ❌ ❌ ❌ ✓

MozJPG ✓ ❌ ❌ ✓ ✓

JPEGrescan ✓ ❌ ❌ ✅ ✓

zlib, brotli, 
zstd

❌ ✅ ✅ ✅ ✅ ✅

Lepton ✅ ✅ ✅ ✅ ✅ ✅



JPEG File

7x71x7  

7x1
DC

• Header
• 8x8 blocks of pixels
– DCT transformed into 64 coefs

o Lossless

– Each divided by large quantizer
o Lossy

– Serialized using Huffman code
o Lossless

Image credit: wikimedia



Entropy Coding
• Huffman code:
– Favor frequently seen coefs, 0’s

• Arithmetic Code:
– Look at values so far 
– Predict next value
– Good prediction = fewer bits
– Bad prediction = more bits



Entropy Coding
• Huffman code:
– Favor frequently seen coefs, 0’s

• Arithmetic Code:
– Look at values so far to predict next value
– Good prediction = fewer bits
– Bad prediction = more bits



Lepton: 2 key ideas
• Streaming arithmetic code with 

sophisticated predictor

• Make image subsets independent



Streaming Arithmetic Code
• Lepton Predictor
– Massive 2.2MB probability model
– Pulls out correlation across files
– Pixel space prediction of DC value
– Predictions for horizontal and vertical patterns



Making image subsets independent
• Probability model reset per thread

• Huffman encoder state serialized in 
Lepton header per thread
– Allows 8-way parallel decode
– Helps to attain 100mbit







Results
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Security Challenges
• Concern about malicious crafted JPEG
– Triggering Buffer overruns
– Avoiding safety checks elided by Undefined behavior
– Exploiting Use-after-free errors



Solution: SECCOMP
• Restrict Syscalls
– read/write/sigreturn/exit

• Severely limits scope of any attack
– Attacker could only write stdout or read stdin
– Separate process per encode or decode

• Awkward Ergonomics
– No dynamic allocation, no mutex, no thread create



SECCOMP

Lepton
Process ⏰

Allocate/Reserve

👮
Enable SECCOMP

pipe
pipe

Start Timer

Fixed 200M memory pool
8 Threads pre-allocated

Pipe made to each thread

Start processing user data



Trustworthiness Requirements
• Bit-for-bit: Dropbox as a filesystem
– Sha256 must match on reconstruction of original

• Determinism
– Decodes need to work every single time

• Resistant to operator/developer error
– We are our own worst enemy



Bit for bit roundtrip
• Lepton Compress, Encrypt File
• MD5 result
• Decrypt and Lepton Decompress
– Decrypt in a separate process address space
– Make sure sha256 matches client-computed
– If not, repeat, but with zlib algorithm

• Upload; make sure Md5 matches



Determinism
Why we need it

• Compression uses all prior data read 
so far to predict next bit
• A single bit can change prediction
– Nondeterministic prediction source would render 

Lepton file unreadable



Determinism
• “Qualify” every Lepton binary
– Build each binary with icc, gcc
– Turn on gcc address sanitizer
– Run over 4 billion images in single+multithread
– make sure icc matches gcc in both cases

• Upon Qualification
– Mark icc binary as qualified, allow it to be pushed



Determinism
• Fuzz the code
– Ran Coverity
– 3rd party ran a checker

• Added array bounds checks
– 10% performance degradation
– Worth it.



Programmer/Operator Error
• Safety Net
– When the system is changed, Safety net activated

• All uploads saved to a S3 bucket
– Encoded with Zlib, then encrypted

• Bucket expires files after 30 days



Supported (Strange) JPEGs
• Unexpected 0 runs near file end

– May be from full SD cards, disk errors, power failure
– Zero runs in the middle only ~0.003% files

• Garbage at the end
– Ex: my H/D has files with TV-ready previews at end

• Arbitrary bits filling partial-bytes



Deployment
• Lepton has encoded 150 billion files
– 203 PiB of JPEG files
– Saving 46 PiB
– So far…

o Backfilling at > 6000 images per second



Power Usage at 6,000 Encodes
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War Stories



War Story: Safety Net
Situation

• Safety net required 2x traffic
• Failover requires extra capacity
• First routine failover test post-Lepton

– Traffic shifted from Virginia to Texas
– Texas S3 proxies overwhelmed by safety net traffic



War Story: Ancient Code Push
Situation

• Example Operator Error
• Bad default in deployment form
– Field specifying git hash to deploy
– If left blank: oldest qualified version deployed

• Features deprecated since original



Ancient Code Push
Detection

• Lowered availability on “Canary”
• Alarm: Lepton rejected decode of 

stored blocks
– Due to deprecated features



Weekly and Diurnal Patterns
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Ancient Code Push
Resolution: No durability impact

• Lepton disabled after 2 hours
– Scanned billions of images uploaded since incident
– Fixed all 17 images that had deprecated features
– No data loss

• Recovery time = Small multiple of 
incident time



Conclusions
• Determinism is important
• Undefined behavior is undesirable
• Configuration management
• Safety in the face of human 

operators and developers
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