
Lepton: a System to Transparently Compress Hundreds of
Petabytes of Image Files For a File-Storage Service

https://github.com/dropbox/lepton

Daniel Reiter Horn, Ken Elkabany, Chris Lesniewski, Keith Winstein

Dropbox Stanford

Overview
Goals

Related Work
Approach

Deployment
Anomalies

Storage Overview at Dropbox
• ¾ Media

• Roughly an Exabyte in storage

• Can we save backend space?

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Other

Videos

JPEGs

Goals
• High compression
• Byte for byte transparency
• Distributed 4MB chunks
• Fast [Streaming 100 Mbit/s decode]
• Secure
• Trustworthy

Related Work
Comp
ratio

Bit-for-bit Distributed Fast Secure Trustworthy

packJPG ✅ ✅ ❌ ❌ ❌ ✓

MozJPG ✓ ❌ ❌ ✓ ✓

JPEGrescan ✓ ❌ ❌ ✅ ✓

zlib, brotli,
zstd

❌ ✅ ✅ ✅ ✅ ✅

Lepton ✅ ✅ ✅ ✅ ✅ ✅

JPEG File

7x71x7

7x1
DC

• Header
• 8x8 blocks of pixels
– DCT transformed into 64 coefs

o Lossless

– Each divided by large quantizer
o Lossy

– Serialized using Huffman code
o Lossless

Image credit: wikimedia

Entropy Coding
• Huffman code:
– Favor frequently seen coefs, 0’s

• Arithmetic Code:
– Look at values so far
– Predict next value
– Good prediction = fewer bits
– Bad prediction = more bits

Entropy Coding
• Huffman code:
– Favor frequently seen coefs, 0’s

• Arithmetic Code:
– Look at values so far to predict next value
– Good prediction = fewer bits
– Bad prediction = more bits

Lepton: 2 key ideas
• Streaming arithmetic code with

sophisticated predictor

• Make image subsets independent

Streaming Arithmetic Code
• Lepton Predictor
– Massive 2.2MB probability model
– Pulls out correlation across files
– Pixel space prediction of DC value
– Predictions for horizontal and vertical patterns

Making image subsets independent
• Probability model reset per thread

• Huffman encoder state serialized in
Lepton header per thread
– Allows 8-way parallel decode
– Helps to attain 100mbit

Results

15

20

30

40

50

100

150

200

6 7 8 9 10 15 20 25

D
ec

om
pr

es
si

on
 s

pe
ed

 (
M

bi
ts

/s
)

Compression savings (percent)

packjpg

Bett
er

Lepton
(this work)

MozJPEG
(arithmetic)

JPEGrescan
(progressive)

Security Challenges
• Concern about malicious crafted JPEG
– Triggering Buffer overruns
– Avoiding safety checks elided by Undefined behavior
– Exploiting Use-after-free errors

Solution: SECCOMP
• Restrict Syscalls
– read/write/sigreturn/exit

• Severely limits scope of any attack
– Attacker could only write stdout or read stdin
– Separate process per encode or decode

• Awkward Ergonomics
– No dynamic allocation, no mutex, no thread create

SECCOMP

Lepton
Process ⏰

Allocate/Reserve

👮
Enable SECCOMP

pipe
pipe

Start Timer

Fixed 200M memory pool
8 Threads pre-allocated

Pipe made to each thread

Start processing user data

Trustworthiness Requirements
• Bit-for-bit: Dropbox as a filesystem
– Sha256 must match on reconstruction of original

• Determinism
– Decodes need to work every single time

• Resistant to operator/developer error
– We are our own worst enemy

Bit for bit roundtrip
• Lepton Compress, Encrypt File
• MD5 result
• Decrypt and Lepton Decompress
– Decrypt in a separate process address space
– Make sure sha256 matches client-computed
– If not, repeat, but with zlib algorithm

• Upload; make sure Md5 matches

Determinism
Why we need it

• Compression uses all prior data read
so far to predict next bit
• A single bit can change prediction
– Nondeterministic prediction source would render

Lepton file unreadable

Determinism
• “Qualify” every Lepton binary
– Build each binary with icc, gcc
– Turn on gcc address sanitizer
– Run over 4 billion images in single+multithread
– make sure icc matches gcc in both cases

• Upon Qualification
– Mark icc binary as qualified, allow it to be pushed

Determinism
• Fuzz the code
– Ran Coverity
– 3rd party ran a checker

• Added array bounds checks
– 10% performance degradation
– Worth it.

Programmer/Operator Error
• Safety Net
– When the system is changed, Safety net activated

• All uploads saved to a S3 bucket
– Encoded with Zlib, then encrypted

• Bucket expires files after 30 days

Supported (Strange) JPEGs
• Unexpected 0 runs near file end

– May be from full SD cards, disk errors, power failure
– Zero runs in the middle only ~0.003% files

• Garbage at the end
– Ex: my H/D has files with TV-ready previews at end

• Arbitrary bits filling partial-bytes

Deployment
• Lepton has encoded 150 billion files
– 203 PiB of JPEG files
– Saving 46 PiB
– So far…

o Backfilling at > 6000 images per second

Power Usage at 6,000 Encodes

21:00
00:00

03:00
06:00

09:00
12:00

15:00
18:00

21:00
00:00

03:00
0

50

100

150

200

250

300

C
h

a
ss

is
 3

o
w

e
r

(k
:

)

0 1 2 3 4
)ile Size (0iB)

0

50

100

150

200

250

D
e
Fo

m
S

re
ss

io
n

 S
S

e
e
d

 (
0

b
it

s/
s)

1 threDd
 2 threDds

 4 threDds
 8 threDds

Timing in Production

War Stories

War Story: Safety Net
Situation

• Safety net required 2x traffic
• Failover requires extra capacity
• First routine failover test post-Lepton

– Traffic shifted from Virginia to Texas
– Texas S3 proxies overwhelmed by safety net traffic

War Story: Ancient Code Push
Situation

• Example Operator Error
• Bad default in deployment form
– Field specifying git hash to deploy
– If left blank: oldest qualified version deployed

• Features deprecated since original

Ancient Code Push
Detection

• Lowered availability on “Canary”
• Alarm: Lepton rejected decode of

stored blocks
– Due to deprecated features

Weekly and Diurnal Patterns

Aug 07 Aug 08 Aug 09 Aug 10 Aug 11 Aug 12 Aug 13
1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
o
d

in
g

 e
v
e
n

ts
 v

s
w

e
e
k
ly

 m
in

decodes

encodes

Sat Sun Mon Tues Wed. Thu Fri Sat
≈ …

Ancient Code Push
Resolution: No durability impact

• Lepton disabled after 2 hours
– Scanned billions of images uploaded since incident
– Fixed all 17 images that had deprecated features
– No data loss

• Recovery time = Small multiple of
incident time

Conclusions
• Determinism is important
• Undefined behavior is undesirable
• Configuration management
• Safety in the face of human

operators and developers

Acknowledgements

• Thanks to Jongmin Baek, Sujay Jayakar, Mario Brito, Preslav Le,
David Mah, James Cowling, Nipunn Koorapati, Lars Zornes, Rajat
Goel, Bashar Al-Rawi, Tim Douglas, Oleg Guba, Ross Delinger,
Dimitry Kotlyarov, Nahi Ojeil, Bean Anderson, Devdatta Akhawe,
Ziga Mahkovec, David Mann, Jeff Arnold, Jessica McKellar, Akhil
Gupta, Aditya Agarwal, Arash Ferdowsi, and Drew Houston

• Matthias Stirner, Gopal Lakhani, Archie Russell, Loren Merritt for
their inspiring JPEG compression work

• Questions?

