APUNet: Revitalizing GPU as
Packet Processing Accelerator

Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon,
Changho Hwang, and KyoungSoo Park

School of Electrical Engineering, KAIST

KAIST

GPU-accelerated Networked Systems

* Execute same/similar operations on each packet in parallel

* High parallelization power
* Large memory bandwidth

CPU

Packet Packet

Packet

Packet

Packet

Packet

GPU

* Improvements shown in number of research works

e PacketShader [SIGCOMM’I0], SSLShader [NSD/I’l 1], Kargus [CCS’12], NBA
[EuroSys’ 5], MIDeA [CCS’| 1], DoubleClick [APSys’12], ...

KAIST

Source of GPU Benefits

e GPU acceleration mainly comes from memory access latency hiding
 Memory I/O = switch to other thread for continuous execution

GPU

_>a:b+c;

v = mem|~].val;

Thread 1 ﬂ'hread 2

Inactive

Quick
Context
Switch

—

GPU

Thread 1

Thread 2

Inactive

W

A

=e*f,

KAIST

Memory Access Hiding in CPU vs. GPU

* Re-order CPU code to mask memory access (G-Opt)*
* Group prefetching, software pipelining

B GPU acceleration M CPU code optimization (G-Opt)

Questions:
Can CPU code optimization be generalized to all network applications?
Which processor is more beneficial in packet processing?

9 =
O
Tidl
0
IPv4 L2 Switch IPv6
*Borrowed from G-Opt slides
*Raising the Bar for Using GPUs in Software Packet Processing [NSDI’I 5] I(AI ST
Anuj Kalia, Dong Zhu, Michael Kaminsky, and David G.Anderson N 4

Contributions

e Demystify processor-level effectiveness on packet processing algorithms
CPU optimization benefits light-weight memory-bound workloads
=== CPU optimization often does not help large memory workloads
+GPU is more beneficial for compute-bound workloads
=== GPU’s data transfer overhead is the main bottleneck, not its capacity

 Packet processing system with integrated GPU w/o DMA overhead
e Addresses GPU kernel setup / data sync overhead, and memory contention
e Up to 4x performance over CPU-only approaches!

KAIST

Discrete GPU

e Peripheral device communicating with CPU via a PCle lane

PCle Lanes (4= CPU <= DHRc:tM
Streaming Multiprocessor (SM) / High computation power
Scheduler Registers (High memory bandwidth
....... / Fast inst./data access
/ Fast context switch

Instruction Cache

GDDR Device Memory

L1 Cache Shared Memory Require CPU-GPU
DMA transfer!

~ >
&

N KAIST

Integrated GPU

* Place GPU into same die as CPU - share DRAM
 AMD Accelerated Processing Unit (APU), Intel HD Graphics

CPU

GPU

L2 Cache

Compute
Unit
X N

APU

>

. . Host
Unified I\;rthbrldge =P S
€= Graphics Northbridge
Compute Unit
Scheduler Registers L1
Cache

No DMA transfer!

/High computation power
Fast inst./data access

/ Fast context switch

/ Low power & cost

KAIST

CPU vs. GPU: Cost Efficiency Analysis

* Performance-per-dollar on 8 popular packet processing algorithms
 Memory- or compute-intensive

* |[Pv4, IPv6,Aho-Corasick pattern match, ChaCha20, Poly I 305, SHA- I, SHA-2, RSA

e Test platform
e CPU-baseline, G-Opt (optimized CPU), dGPU w/ copy, dGPU w/o copy, iGPU

CPU / Discrete GPU APU |/ Integrated GPU
CPU | Intel Xeon E5-2650 v2 (8 @ 2.6 GHz) CPU AMD RX-421BD (4 @ 3.4 GHz)
GPU NVIDIA GTX980 (2048 @ 1.2 GHz) GPU | AMD R7 Graphics (512 @ 800 MHz)
RAM 64 GB (DIMM DDR3 @ 1333 MHz) RAM | 16 GB (DIMM DDR3 @ 2133 MHz)
Cost CPU: $1143.9 dGPU: $840 Cost iGPU: $67.5

KAIST

Cost Effectiveness of CPU-based Optimization

* G-Opt helps memory-intensive, but not compute-intensive algorithms
e Computation capacity as bottleneck with more computations

|
IPv6 table lookup AC pattern matching : SHA-2

Detailed analysis on CPU-based optimization in the paper ©

=
ol

= t DS

S 1 S 8 2

&) o) 1 1 ©

(6] (b} 1 (D]

N N N1

C_ﬂ 0-5 B C_U 05 | (_U

S E -

B (@] I (@) 0

Z 0 Z 0 1 < CPU G-Opt dGPU

|

NDT! KAIST .

Cost Effectiveness of Discrete/Integrated GPUs

* Discrete GPU suffers from DMA transfer overhead
* Integrated GPU is most cost efficient!

. | SR — / 01 (0]
(4%}
5 3 Our approach: 14.4
g , Use integrated GPU to accelerate packet processing!
T =
o I o i S O
5 15 - = 4.8
£ 05 : c_és 1.0 . < 1.0
S 0 5 o | T g o =4
G-Opt dGPU dGPU | < G-Opt dGPU iGPU G-Opt dGPU iGPU
w/ copy w/o copy | w/o copy w/o copy
|
1

(&

Contents

* Research Challenges
 APUNet design
 Evaluation

 Conclusion

KAIST

Research Challenges

* Frequent GPU kernel setup overhead
e Overhead exposed w/o DMA transfer

* High data synchronization overhead
e CPU-GPU cache coherency

* More contention on shared DRAM
e Reduced effective memory bandwidth

Set input
Redundant _I | Launch kernel |
overhead! Teardown kernel
Retrieve result
APU
CPU — -
Explicit
GPU # Sync! P DRAM
Cache ’

APUNet: a high-performance APU-accelerated network packet processor

KAIST

Persistent Thread Execution Architecture

e Persistently run GPU threads without kernel teardown

e Master passes packet pointer addresses to GPU threads

CPU Shared Virtual Memory (SVM) GPU
Master —' e |)[4 Thread 0
- ® < Thread 1
Work [Packet J+
TR aderel 1. ® Thread 2
[Packet 1/0]
) Thread 3
t S — ® :
NIC . Packet Pool !{ Pointer Array | _Persistent Threads

KAIST

Data Synchronization Overhead

 Synchronization point for GPU threads: L2 cache

* Require explicit synchronization to main memory

f Shared Virtual Memory)

-

Master

| Thread O

Graphics
Northbridi

Upd

Can process one
request at a time!

>

J . .”
=
Thread 1
Thread 2 Thread 3
ult?

Thread 4 Thread 5
eed explicit ““1ead6 | [Thread 7

sync! : :

Za AN
%

[

KAIST

14

Solution: Group Synchronization

* Implicitly synchronize group of packet memory GPU threads processed

e Exploit LRU cache replacement policy

Shared Virtual Memory

P[P

P P e

SN

Master

Group 1

| Group 2 |

|

For more details and tuning/optimizations, please refer to our paper ©

GPU

L2 Cache

D

D

D

D

D

D

GCruU T1EdU GIoup L GCrFU ITTiredld GIoup £
Thread 0 Thread 31 Thread 0
Poll Poll |« Poll «
Process <|E| Process Dummy Mem 1/O]
Barrier [Barrier --/ Barrier —

KAIST

Zero-copy Based Packet Processing

Option 1. Traditional method with discrete GPU Option 2. Zero-copy between CPU-GPU

NIC || CPU | COPY GPU NIC COPY CPU GPU

— —

Standard (e.g., mmap) GDDR (e.g., cudaMalloc) Standard (e.g., mmap) Shared (e.g., cISVMAIloc)

High overhead! High overhead!

* Integrate memory allocation for NIC, CPU, GPU

NIC CPU GPU

No copy overhead!

Shared (e.g., cISVMAIloc)

Evaluation

N | e

APUNet (AMD Carrizo APU)

RX-421BD (4 cores @ 3.4 GHz)
R7 Graphics (512 cores @ 800 MHz)
|6GB DRAM

40 Gbps NIC
Mellanox ConnectX-4

Client (packet/flow generator)
Xeon E3-1285 v4 (8 cores @ 3.5 GHz)
32GB DRAM

* How well does APUNet reduce latency and improve throughputs?

e How practical is APUNet in real-world network applications!?

N KAIST

Benefits of APUNet Design

* Workload: IPsec (128-bit AES-CBC + HMAC-SHAI)

Packet latency (us)

Packet Processing Latency

EGPU-Copy BGPU-ZC BGPU-ZC-PERSIST

1.5%

64 128 256 512 1024 1451
Packet size (bytes)

Synchronization Throughput

Throughput (Gbps)

S P, NN W B~ O O

(64B Packet)

5.31

Atomics Group sync

Real-world Network Applications

* 5 real-world network applications
* IPv4/IPv6 packet forwarding, IPsec gateway, SSL proxy, network IDS

IPsec Gateway SSL Proxy
mCPU Baseline mG-Opt ®APUNet @CPU Baseline @G-Opt @ APUNet
—~ 20 ¢ 16.4) 5000 r 4241
g 15 & 4000 3583
= 10 s 3000 2.75X
Sy E 2000 |
o 5 F 1000
b= T
=0 0
64 1451 256 8192
Packet size (bytes) Number of concurrent connections

N_g‘:: KAIST

Real-world Network Applications

* Snort-based Network IDS

, , Network IDS
e Aho-Corasick pattern matching
@ CPU Baseline mG-Opt = APUNet
. L =127 g 710.4
* No benefit from CPU optimization! £ 10 | '
e Access many data structures % 8
 Eviction of already cached data é— 6 1 3636 42 ax
2 47 2.6 2.324
S o2 |
e DFC* outperforms AC-APUNet F o0
¢ CPU-based algorithm 64 | 1514
* Cache-friendly & reduces memory access Packet size (bytes)
*DFC:Accelerating String Pattern Matching for Network Applications [NSDI’| 6] I(AI ST

Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, KyoungSoo Park, and Dongsu Han

Conclusion

e Re-examine the efficacy of GPU-based packet processor
* GPU is bottlenecked by PCle data transfer overhead
* Integrated GPU is the most cost effective processor

 APUNet: APU-accelerated networked system
* Persistent thread execution: eliminate kernel setup overhead
* Group synchronization: minimize data synchronization overhead
e Zero-copy packet processing: reduce memory contention
e Up to 4x performance improvement over CPU baseline & G-Opt

APUNet
High-performance, cost-effective platform for real-world network applications

KAIST

Thank you.

Q&A

KAIST

	APUNet: Revitalizing GPU as �Packet Processing Accelerator�
	GPU-accelerated Networked Systems
	Source of GPU Benefits
	Memory Access Hiding in CPU vs. GPU
	Contributions
	Discrete GPU
	Integrated GPU
	CPU vs. GPU: Cost Efficiency Analysis
	Cost Effectiveness of CPU-based Optimization
	Cost Effectiveness of Discrete/Integrated GPUs
	Contents
	Research Challenges
	Persistent Thread Execution Architecture
	Data Synchronization Overhead
	Solution: Group Synchronization
	Zero-copy Based Packet Processing
	Evaluation
	Benefits of APUNet Design
	Real-world Network Applications
	Real-world Network Applications
	Conclusion
	Thank you.�

