
Virtual	Filtering	Platform

A	retrospective	on	8	years	of	shipping	Host	
SDN	in	the	Public	Cloud

Daniel	Firestone
Tech	Lead	and	Manager,	Azure	Networking	Host	SDN	Team



Overview

• Azure	and	Scale
• Why	Virtual	Switches	for	SDN?
• Early	implementations	of	Azure	Host	SDN
• Azure	Host	SDN	Platform	Goals
• VFP	– Our	platform	for	host	SDN
• VFPv2	– Addressing	Challenges	of	Scale
• Hardware	Offloads
• Conclusion	and	Future



mediacaching identity service	bus

mobile	
services

cloud	
services

virtual	
machines

Data
Services tableData	Lake

blob	
storage

SQL	
database

App	
Services

media

hpcintegration analytics

caching identity service	bus

web apps
mobile	
services

cloud	
services

Infrastructure	
Services cdn

virtual	
machines

virtual	
network vpn

traffic	
manager

Microsoft	Azure



2013201420152016



10’s	of	PB ExabytesAzure	
Storage

Pbps10’s	of	TbpsDatacenter	
Network

2010 2017

100K MillionsCompute	
Instances



Fortune	500	using	
Microsoft	Cloud

>85%

>60 TRILLION
Azure	storage	
objects

>9 MILLION
Azure	Active	
Directory	Orgs

1	out	of	3	
Azure	VMs
are	Linux	VMs>900 TRILLION

requests/day

>	3 TRILLION
Azure	Event	Hubs	
events/week

>110	BILLION
Azure	DB	requests/day

Azure	Scale	&	Momentum

>18 BILLION
Azure	Active	Directory	
authentications/week

New	Azure	customers	a	month

>120,000



Why	do	we	need	Virtual	Switch	
SDN	Policy?

Policy	application	at	the	host	is	more	scalable!



IaaS VM

Example	#1:	LB	(From	Ananta,	SIGCOMM	‘13)

• All	infrastructure	runs	behind	an	LB	
to	enable	high	availability	and	
application	scale
• How	do	we	make	application	load	
balancing	scale	to	the	cloud?
• Challenges:
• How	do	you	load	balance	the	load	
balancers?
• Hardware	LBs	are	expensive,	and	
cannot	support	the	rapid	
creation/deletion	of	LB	endpoints	
required	in	the	cloud
• Support	10s	of	Gbps per	cluster
• Need	a	simple	provisioning	model

LB

Web	Server	
VM

Web	Server	
VM

SQL	
Service

IaaS VM

SQL	
Service



NAT

“SDN”	Approach:
Software	LB	with	NAT	in	VMSwitch

MUX

VM	DIP
10.1.1.2

VM	DIP
10.1.1.3

Azure	VMSwitch

Stateless
Tunnel

Edge	Routers

Client

VIP

VIP

DIPDIP

Direct
Return:
VIP

VIP

MUX

VM	DIP
10.1.1.4

VM	DIP
10.1.1.5

Azure	VMSwitch

NAT
SLBM

Tenant	Definition:
VIPs,	#	DIPs

Mappings

• Goal	of	an	LB:	Map	a	Virtual	IP	
(VIP)	to	a	Dynamic	IP	(DIP)	set	
of	a	cloud	service
• Two	steps:	Load	Balance			
(select	a	DIP)	and	NAT	
(translate	VIP->DIP	and	ports)
• Pushing	the	NAT	to	the	vswitch
makes	the	MUXes stateless	
(ECMP)	and	enables	direct	
return
• Single	controller	abstracts	out	
LB/vswitch interactions

NAT



Example	#2:	Vnet

• Ideas	from	VL2	(SIGCOMM	‘09)

• Goal	is	to	map	Customer	Addresses	(e.g.	BYO	IP	space)	to	Provider	
Addresses	(real	10/8	addresses	on	the	physical	network)

• This	requires	a	translation	of	*every*	packet	on	the	network	– no	
hardware	device	on	our	network	is	scalable	enough	to	handle	this	
load	along	with	all	of	the	relevant	policy

• Enables	companies	to	create	their	own	virtual	network	in	the	cloud,	
defining	their	own	topologies,	security	groups,	middleboxes	and	more



VNET	Forwarding	Policy:	Traffic	to	on-prem

Node1:	10.1.1.5

Blue	VM1
10.1.1.2

Green	VM1
10.1.1.2

VMSwitchSrc:10.1.1.2 Dst:10.2.0.9
Src:10.1.1.2 Dst:10.2.0.9

Policy	lookup:
10.2/16	routes	to
GW	on	host	with
PA	10.1.1.7

NM

Src:10.1.1.5 Dst:10.1.1.7 GRE:Green Src:10.1.1.2 Dst:10.2.0.9

L3	Forwarding	Policy

Node3:	10.1.1.7

Green	VPN	GW	VM
10.1.2.1

VMSwitch

Green	Enterpise
Network
10.2/16

VPN	GW

Src:10.1.1.2 Dst:10.2.0.9L3VPN	PPP



Even	More	VSwitch…

• 5-tuple	ACLs	
• Infrastructure	Protection
• User-defined	Protection

• Billing
• Metering	traffic	to	internet

• Rate	limiting
• Security	Guards
• Spoof,	ARP,	DHCP,	and	other	attacks

• More	in	development
all	the	time…

NM/TM

Node2:	10.2.1.6

VM1
10.1.1.2

VM2
10.1.1.3

VMSwitch

Tenant	Description

ACL:	VM2	can	talk	to	other	green	VMs
ACL:	VM2	can	talk	to	VM3	but	not	VM4
Meter	all	traffic	from	VM2	outside	of	10/8
Rate	limit	VM2	to	800mbps

VM3
10.1.1.4

VM4
10.1.1.5 Billing

VM2	sent	23MB	of
public	internet	traffic



Early	Approach	to	Azure	Vswitch (2009-2011):
Stacked	SDN	drivers	per	app
• Each	SDN	application	is	a	driver	module	hard	
compiled	into	the	vswitch,	handling	packets	
on	its	own

• Changes	to	SDN	policy	require	kernel	space	
changes,	and	an	OS	update

• Was	revolutionary	for	us	in	shipping	LB	and	
VNET	and	Host	SDN	– but	not	easy	to	add	
new	SDN	Apps

• After	a	couple	of	years	we	decided	we	
needed	a	more	flexible	Host	SDN	platform

Azure	Virtual	Switch

ACLs

LB

VNET



Overview

• Azure	and	Scale
• Why	Virtual	Switches	for	SDN?
• Early	implementations	of	Azure	Host	SDN
• Azure	Host	SDN	Platform	Goals
• VFP	– Our	platform	for	host	SDN
• VFPv2	– Addressing	Challenges	of	Scale
• Hardware	Offloads
• Conclusion	and	Future



Original	Goals	for	Azure	Host	SDN	Platform

• Goal	1:	Provide	a	programming	model	allowing	for	multiple	
simultaneous,	independent	network	controllers	to	program	network	
applications,	minimizing	cross-controller	dependencies

• Goal	2:	Provide	a	MAT	programming	model	capable	of	using	
connections	as	a	base	primitive,	rather	than	just	packets	– stateful
rules	as	first	class	objects

• Goal	3:	Provide	a	programming	model	that	allows	controllers	to	
define	their	own	policy	and	actions,	rather	than	implementing	fixed	
sets	of	network	policies	for	predefined	scenarios



What	is	VFP?



VMSwitch

vNIC

VM

NIC
vNIC

VM

SLB	(NAT)

VNET

ACLs,	Metering,	Security

VFP

Virtual	Filtering	Platform	(VFP)	
Azure’s	SDN	Dataplane

• Plugin	module	for	WS2012+	VMSwitch
• Provides	core	SDN	functionality	for	Azure	
networking	services,	including:
• Address	Virtualization	for	VNET
• VIP	->	DIP	Translation	for	SLB
• ACLs,	Metering,	and	Security	Guards

• Uses	programmable	rule/flow	tables	to	
perform	per-packet	actions
• Programmed	by	multiple	Azure	SDN	
controllers,	supports	all	dataplane policy	
at	line	rate	with	offloads



VFP	Translates	L2	extensibility	(ingress/egress	to	switch)	
to	L3	extensibility	(inbound/outbound	to	VM)	

VM

Metering

VNET

SLB

ACLs

Inbound	(Egress) Outbound	(Ingress)

Egress	->	Inbound

Ingress	->	Outbound

VMSwitch

vNIC

VM

NIC
vNIC

VM

SLB	(NAT)

VNET

ACLs,	Metering,	Security

VFP
Egress

Egress

Ingress

Ingress



Goal:	All	Policy	is	in	the	Controller	-
VFP	is	a	Fast,	Flexible	Implementation	of	Policy
• To	enable	agility,	allow	controllers	to	specify	exactly	what	they	want	
to	do	at	the	flow/packet	level,	so	they	can	implement	new	SDN	
scenarios	without	dataplane driver	changes
• VFP	focuses	on	integrating	multi-controller	policies	and	scaling	the	
host	dataplane – perf and	offloads	without	sacrificing	flexibility
• 3	Key	Primitives	we	expose	to	controllers:
• Layers	– independent	flow	tables	per	controller	to	order	the	pipeline
• Rule	Matches	– define	which	packets	match	which	rule
• Rule	Actions	– what	to	do	with	a	packet	for	a	given	rule



Node:	10.4.1.5

VFP

Key	Primitive:	Match	Action	Tables

Blue	VM1
10.1.1.2NIC

Controllers

Tenant	Description
VNet Description

Flow Action

VNet Routing	
Policy ACLsNAT

Endpoints

Flow ActionFlow Action

TO:	10.2/16 Encap to	GW

TO:	10.1.1.5 Encap to	10.5.1.7

TO:	!10/8 NAT out	of	VNET

Flow ActionFlow Action

TO:	79.3.1.2 DNAT	to	10.1.1.2

TO:	!10/8 SNAT	to	79.3.1.2

Flow Action

TO:	10.1.1/24 Allow

10.4/16 Block

TO:	!10/8 Allow

• VFP	exposes	a	typed	Match-
Action-Table	API	to	the	
agents/controllers
• One	table	(“Layer”)	per	policy
• Inspired	by	OpenFlow and	other	
MAT	designs,	but	designed	for	
multi-controller,	stateful,	
scalable	host	SDN	applications

VNET SLB	NAT ACLS



Layers

• A	VFP	layer	is	not	a	built-in	
function	– it	is	a	generic	set	of	
rule/flow	tables
• Any	layer	can	be	created	at	any	
time	– it	is	only	an	“LB	layer”	or	
a	“VNET	layer”	based	on	what	
rules	are	plumbed	into	it
• Resources	like	NAT	pools	or	PA-
>CA	mapping	pools	are	available	
to	any	layer	to	implement	
special	functionality	(e.g.	SLB	or	
VNET)



Everything	is	Stateful
• The	core	primitive	of	most	policy	is	a	(TCP,	
UDP,	…)	connection	– translates	to	a	two-
way	flow
• 5-tuple	ACLs,	VIP-DIP	SLB	NAT,	dynamic	
outbound	SNAT,	and	more
• Stateful rules	make	it	easy	to	reason	
about	asymmetric	policy	– rules	apply	to	
whichever	side	started	the	flow,	and	the	
reverse	happens	automatically	for	the	
other	direction
• Flow	state	managed	by	TCP	connection	
tracker

VM

OUT	
Rules

IN	
Rules

Flow Flow

IN	Flow	Table OUT	Flow	Table

VFP

Layer



Example:	Software	LB	Support
VM

Dynam
ic	NAT
Rules

Static	
NAT	
Rules

OUT	
Rules

Decap
Rules

IN	Flow	Table OUT	Flow	Table

IN	Flow	Table OUT	Flow	Table

FlowFlow

SLB	NAT	Layer

SLB	Decap Layer

FlowFlow NAT	
Ranges

NAT	Pool

Rules	can	reference	Resources,	like
dynamic	NAT	pools	or	PA-CA

mapping	tables

Similarly,	VNET	can	be	expressed	as	a
series	of	(encap,	decap,	rewrite,	etc)
rules,	rather	than	fixed	policy



Cool	Uses	of	Stateful Flows	– LB	Fastpath

VFP

SLB	
Decap/Fastpath

SLB	NAT

Storage

Decap

VFP

SLB	
Decap/Fastpath

SLB	NAT

VM

DecapEncap

MUX Redirect
Packet

FASTPATH



Example	VFP	Layers:
Support	for	LB,	VNET,	
Security	Groups,	and	Billing

VM

ACLs

VNET

SLB	NAT

ILB

SLB	Decap /	Fastpath

Metering

Successfully	deployed	
across	Azure	in	2012



Agility	Example:	Internal	Load	Balancing

• LB	team	wanted	to	offer	CA-
space	LB	in	addition	to	PA-
space	LB

• All	they	had	to	do	was	create	a	
new	layer	– added	new	policy	
by	specifying	CA-space	rule	
matches	for	NAT	rules

• No	new	work	in	VFP,	because	
we	picked	the	right	primitives

VM

ACLs

VNET

SLB	NAT

ILB

SLB	Decap /	Fastpath

Metering

SLB	
Controller



Overview

• Azure	and	Scale
• Why	Virtual	Switches	for	SDN?
• Early	implementations	of	Azure	Host	SDN
• Azure	Host	SDN	Platform	Goals
• VFP	– Our	platform	for	host	SDN
• VFPv2	– Addressing	Challenges	of	Scale
• Hardware	Offloads
• Conclusion	and	Future



Scaling	Up	SDN:	NIC	Speeds	in	Azure

• 2009:	1Gbps
• 2012:	10Gbps
• 2015:	40Gbps
• 2017:	50Gbps
• Soon:	100Gbps?

We	got	a	50x	improvement	in	network	throughput,	
but	not	a	50x	improvement	in	CPU	power!	

0

10

20

30

40

50

60

2009 2012 2015 2017

NIC	Speed,	Gbps



New	Goals	for	VFPv2	(2013-2014)

• Goal	4:	Provide	a	serviceability	model	allowing	for	frequent	
deployments	and	updates	without	requiring	reboots	or	interrupting	
VM	connectivity	for	stateful flows,	and	strong	service	monitoring

• Goal	5:	Provide	very	high	packet	rates,	even	with	a	large	number	of	
tables	and	rules,	via	extensive	caching

• Goal	6:	Implement	an	efficient	mechanism	to	offload	flow	policy	to	
programmable	NICs,	without	assuming	complex	rule	processing	



VFPv1	Layers	- Challenges
VM

Metering

VNET

SLB	NAT

ACLs

SLB	Decap /	Fastpath

ILB

• Holdover	from	original	vswitch design	– every	
layer	independently	handles,	parses,	and	
modifies	packets

• Most	of	our	layers	want	to	be	stateful – but	this	
means	independent	connection	tracking	and	
flow	state	at	each	layer

• As	host	SDN	became	easy	to	program	and	
widely	used,	people	wanted	to	add	new	layers	
all	the	time

• Couldn’t	keep	adding	layers	and	scaling	up

PARSE

PARSE
PARSE

PARSE

PARSE
PARSE

PARSE

Modify

Modify

Modify

Modify

We	need	a	better	primitive	for	actions!



VM

Metering

VNET

SLB	NAT

ACLs

SLB	Decap /	Fastpath

ILB

PARSE

MODIFY

Unified	FlowID

HEADER

HEADER

HEADER

MATCH

Transposition
Engine

Composite
Transposition

ASIC	Pipeline	Model:
Parse	Once,
Modify	Once

TRANSPOSE

Shipped	in	2014



Header	Transposition	- Actions
Header Parameters

Outer	Ethernet Source	MAC,	Dest	MAC

Outer	IP Source	IP,	Dest	IP

Encap Encap Type, GRE	Key	/	VXLAN	VNI

Inner	Ethernet Source	MAC,	Dest	MAC

Inner	IP Source	IP,	Dest	IP

TCP/UDP Source	Port,	Dest Port	(note:	does	not	support	Push/Pop)

Action Notes

Pop Remove	this	header.	No	params	supported.

Push Push	this	header	onto	the	packet.	All	params must	be	specified.

Modify Modify	this	header.	All	params	are	optional,	but	at	least	one	must	
be	specified.

Ignore Leave	this	header	as	is.	No	params	supported.

Not	Present This	header	is	not	expected	to	be	present	(based	on	the	match	
conditions).	No	params supported.

Headers

Header	Actions



Header	Transposition	– Example	Actions

Header NAT Encap Decap Encap+NAT Decap+NAT

Outer	Ethernet Ignore Push	(SMAC,DMAC) Pop Push	(SMAC,DMAC) Pop

Outer	IP Modify	(SIP,DIP) Push	(SIP,DIP) Pop Push	(SIP,DIP) Pop

GRE	/	VxLAN Not	Present Push	(Key) Pop Push	(Key) Pop

Inner	Ethernet Not	Present Modify	(DMAC) Ignore Modify	(DMAC) Ignore

Inner	IP Not	Present Ignore Ignore Modify	(SIP,DIP) Modify	(SIP,DIP)

TCP/UDP Modify	(SPt,DPt) Ignore Ignore Modify	(SPt,DPt) Modify	(SPort,DPt)

Allows	rules	to	express	more	complex	actions	across	headers



Unified	Parsing	and	Matching
Condition Notes

Source	VPort N/A

(Outer)	Source	MAC	Address N/A

(Outer)	Destination	MAC	Address N/A

(Outer)	Source	IP	Address IPv4	or	IPv6

(Outer)	Destination	IP	Address IPv4	or	IPv6

(Outer)	IP	Protocol N/A

Source	Port Applies	if	Protocol	==	TCP	or	UDP

Destination	Port Applies	if	Protocol	==	TCP	or	UDP

ICMP	Type Applies	if	Protocol	==	ICMP	(v4	or	v6)

Destination	Vport N/A

GRE	Key	/	VxLAN VNI	(Tenant	ID) Applies	if	Outer	Protocol	==	GRE	/	VxLAN

(Inner)	Source	MAC	Address N/A

(Inner)	Destination	MAC	Address N/A

(Inner)	Source	IP	Address IPv4	or	IPv6

(Inner)	Destination	IP	Address IPv4	or	IPv6

(Inner)	IP	Protocol N/A



Header	Transpositions	Complete	our	Generic	
Southbound	API	Capability	Story
• In	order	to	enable	agility,	we	want	controllers	to	be	able	to	define	
new	types	of	policy	dynamically	without	needing	to	change	VFP.
• We	already	provide	flexibility	in:
• Layers:	Controllers	can	define	new	layers	dynamically	for	their	own	policy	
without	interfering	with	other	controllers’	layers
• Rules:	Controllers	can	define	which	rules	match	which	packets	via	a	
consistent	5-tuple	match	API,	nothing	specific	to	special	policies

• Header	transpositions	provide	the	key	third	primitive:	Ability	to	
specify	what	exactly	a	rule	does	once	it	is	matched
• All	built	in	rules	define	HTs,	but	controllers	can	define	their	own	rules	
by	creating	new	ones	out	of	HTs	on	the	fly



Unified	Flow	Tables	– A	Fastpath Through	VFP

Transposition
Engine

Rew
rite

Transposition

SLB	Decap SLB	NAT VNET ACL Metering
Rule Action Rule ActionRule Action Rule Action Rule Action Rule Action

Decap* DNAT* Rewrite* Allow* Meter*First	
Packet

Second+	
Packet

Flow Action
Decap,	DNAT,	Rewrite,	Meter1.2.3.1->1.3.4.1,	62362->80

Rule	Lookups	(Expensive)

Hash	Lookups	(Cheap)

VFP



Unified	Flow	Tables

• Single	hash	lookup	for	each	packet	after	flow	is	created
• Leaves	room	for	new	layers	w/o	perf impact	(e.g.	ILB,	etc)
• Single	flow	table	per	VM	can	be	sized	with	VM	size
• All	VFP	actions	can	be	expressed	as	header	transpositions	– e.g.	
encap/decap/l3	rewrite/l4	NAT
• Any	set	of	header	transpositions	can	be	composed	and	expressed	as	
one	transposition
• Unified	Flow	Table:	One	match	(per	entire	flowid,	inner	and	outer)	
and	one	action	(header	transposition)	per	flow



Overview

• Azure	and	Scale
• Why	Virtual	Switches	for	SDN?
• Early	implementations	of	Azure	Host	SDN
• Azure	Host	SDN	Platform	Goals
• VFP	– Our	platform	for	host	SDN
• VFPv2	– Addressing	Challenges	of	Scale
• Hardware	Offloads
• Conclusion	and	Future



Single	Root	IO	Virtualization	(SR-IOV):
Native	Performance	for	Virtualized	Workloads

Parent	Partition VM1 VM2

TCP/IP TCP/IP

VF	Driver VF	Driver
Network	Virtual	Service	Provider

NICNIC	Embedded	Switch

External	Switch

VF VFPF

But	where	is	the	SDN	Policy?



2016:	Accelerating	VFP	with	FPGA	SmartNICs

• Goal:	Offload	a	cache	of	our	
internal	(unified)	flow	table	to	
the	NIC

• Package	Header	Transpositions	
and	Unified	Flow	IDs	into	
hardware	API

• Allows	us	to	enable	SR-IOV,	
applying	virtualization	policy	in	
hardware	and	bypassing	the	
host	completely

Future	of	Host	SDN:	New	Hardware/Software	co-design	models,	
programmable	acceleration	for	transports,	QoS,	crypto,	and	more!



Results	-
Azure	Accelerated	Networking:	Fastest	Cloud	Network!
• Highest	bandwidth	VMs	of	any	cloud
• DS15v2	&	D15v2	VMs	get	up	to	25Gbps

• Consistent	low	latency	network	performance
• Provides	SR-IOV	to	the	VM
• 10x	latency	improvement
• Increased	packets	per	second	(PPS)
• Reduced	jitter	means	more	consistency	in	workloads

• Enables	workloads	requiring	native	performance	to	run	in	cloud	VMs
• >2x	improvement	for	many	DB	and	OLTP	applications



Host	Networking	makes	Physical	Network
Fast	and	Scalable

• Massive,	distributed	40/100GbE	
network	built	on	commodity	hardware
• No	Hardware	per	tenant	ACLs
• No	Hardware	NAT
• No	Hardware	VPN	/	overlay
• No	Vendor-specific	control,	management	
or	data	plane

• All	policy	is	in	software	on	hosts	–
and	everything’s	a	VM!
• Network	services	deployed	like	all	
other	services

• VFP,	battle	tested	in	the	cloud,	is	now	
available	in	Microsoft	Azure	Stack	for	
private	cloud	as	well!

T2-1-
1

T2-1-
2

T2-1-
8

T3-
1

T3-
2

T3-
3

T3-
4

Row	Spine

T2-4-
1

T2-4-
2

T2-4-
4

Data	Center	Spine

T1-1 T1-8T1-7…T1-2

… …

Regional	Spine

…

T1-1 T1-8T1-7…T1-2 T1-1 T1-8T1-7…T1-2

Rack …
T0-1 T0-2 T0-

20

40/50G	
Servers

…
T0-1 T0-2 T0-

20

40/50G	
Servers

…
T0-1 T0-2 T0-

20

40/50G	
Servers



Thanks!

• VFP	Developers
• Yue	Zuo,	Harish	Kumar	Chandrappa,	Praveen	Balasubramanian,	Vikas	Bhardwaj,	
Somesh	Chaturmohta,	Milan	Dasgupta,	Mahmoud	Elhaddad,	Luis	Hernandez,	Nathan	
Hu,	Alan	Jowett,	Hadi	Katebi,	Fengfen	Liu,	Keith	Mange,	Randy	Miller,	Claire	Mitchell,	
Sambhrama	Mundkur,	Chidambaram	Muthu,	Gaurav	Poothia,	Madhan	Sivakumar,	
Ethan	Song,	Khoa	To,	Kelvin	Zou,	and	Qasim	Zuhair

• Design	Influence
• Alireza	Dabagh,	Deepak	Bansal,	Pankaj	Garg,	Changhoon	Kim,	Hemant	Kumar,	
Parveen	Patel,	Parag	Sharma,	Nisheeth	Srivastava,	Venkat	Thiruvengadam,	
Narasimhan	Venkataramaiah,	Haiyong	Wang

• Dave	Maltz,	Mark	Russinovich,	and	Albert	Greenberg	for	years	of	support



Want	to	come	build	the	next	generation	of	
scalable	Host	SDN?	We’re	hiring!

fstone@microsoft.com


