
Daniel Crankshaw
Xin Wang, Giulio Zhou,

Michael Franklin, Joseph Gonzalez, Ion Stoica

NSDI 2017
March 29, 2017

A Low-Latency Online Prediction 
Serving System

Clipper



Big
Data

Complex Model

Training

Learning



Big
Data

Complex Model

Training

Learning



Learning Produces a Trained Model

“CAT”

Query Decision

Model



Big
Data

Training

Learning

Application

Decision

Query

?

Serving

Model



Big
Data

Training

Learning

Application

Decision

Query

Model

Prediction-Serving for interactive applications
Timescale: ~10s of milliseconds

Serving



Prediction-Serving Raises 
New Challenges



Prediction-Serving Challenges

Support low-latency, high-
throughput serving workloads

???
Create VWCaffe 8

Large and growing ecosystem 
of ML models and frameworks



Models getting more complex
Ø 10s of GFLOPs [1]

Support low-latency, high-throughput serving workloads

Using specialized hardware 
for predictions

Deployed on critical path
Ø Maintain SLOs under heavy load

[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.



Google Translate

Serving

82,000 GPUs 
running 24/7

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

140 billion words a day1
Invented New Hardware!
Tensor Processing Unit 

(TPU)



Big Companies Build One-Off Systems

Problems:
Ø Expensive to build and maintain

Ø Highly specialized and require ML and 
systems expertise

Ø Tightly-coupled model and application
Ø Difficult to change or update model

Ø Only supports single ML framework



Prediction-Serving Challenges

Support low-latency, high-
throughput serving workloads

???
Create VWCaffe 12

Large and growing ecosystem 
of ML models and frameworks



Large and growing ecosystem of ML models and frameworks

???

Content
Rec.

Fraud
Detection

Personal
Asst.

Robotic
Control

Machine
Translation

Create VW
Caffe 13



???

Content
Rec.

Fraud
Detection

Personal
Asst.

Robotic
Control

Machine
Translation

Create VW
Caffe

Varying physical
resource requirements

Difficult to deploy and
brittle to manage

Large and growing ecosystem of ML models and frameworks



But most companies 
can’t build new 

serving systems…



Big
Data

Batch Analytics

Model

Training

Use existing systems: Offline Scoring



Big
Data

Model

Training

Batch Analytics

Scoring
X Y

Datastore
Use existing systems: Offline Scoring



Application

Decision

Query

Look up decision in datastore

Low-Latency Serving

X Y

Use existing systems: Offline Scoring



Application

Decision

Query

Look up decision in datastore

Low-Latency Serving

X Y

Problems:
Ø Requires full set of queries ahead of time

Ø Small and bounded input domain
Ø Wasted computation and space

Ø Can render and store unneeded predictions
Ø Costly to update

Ø Re-run batch job

Use existing systems: Offline Scoring



Prediction-Serving Challenges

Support low-latency, high-
throughput serving workloads

???
Create VWCaffe 20

Large and growing ecosystem 
of ML models and frameworks



How does Clipper address 
these challenges?



q Simplifies deployment through layered 
architecture

q Serves many models across ML 
frameworks concurrently

q Employs caching, batching, scale-out 
for high-performance serving

Clipper Solutions



Clipper

Predict FeedbackRPC/REST Interface

Caffe
MC MC MC

RPC RPC RPC RPC

Clipper Decouples Applications and Models

Applications

Model Container (MC)



Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

MC MC MC
RPC RPC RPC RPC

Model Abstraction Layer
Provide a common interface to models
while bounding latency and 
maximizing throughput.

Model Selection LayerImprove accuracy through bandit methods and 
ensembles, online learning, and personalization

Model Container (MC)



Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

MC MC MC
RPC RPC RPC RPC

Model Selection LayerSelection Policy

Model Abstraction Layer
Caching

Adaptive Batching

Model Container (MC)



Clipper Implementation

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

MC MC MC
RPC RPC RPC RPC

Model Abstraction Layer
Caching

Adaptive Batching

Model Container (MC)

ustCore system: 5000 lines of Rust

RPC:
• 100 lines of Python
• 250 lines of Rust
• 200 lines of C++



Model Container (MC)

Caffe

Correction LayerCorrection Policy

MC MC MC
RPC RPC RPC

Model Abstraction Layer
Caching

Adaptive Batching

Provide a common interface to models while 

RPC



Correction LayerCorrection Policy

Model Container (MC)
RPC

Caffe
MC

RPC
MC

RPC
MC

RPC

Model Abstraction Layer
Caching

Adaptive Batching

Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems



Container-based Model Deployment

class ModelContainer:
def __init__(model_data)
def predict_batch(inputs)

Implement Model API:



class ModelContainer:
def __init__(model_data)
def predict_batch(inputs)

Implement Model API:

Ø Implemented in many languages
Ø Python
Ø Java
Ø C/C++

Container-based Model Deployment



Model implementation packaged in container

Model Container (MC)

Container-based Model Deployment

class ModelContainer:
def __init__(model_data)
def predict_batch(inputs)



Clipper

Caffe
MC MC MC

RPC RPC RPC RPC
Model Container (MC)

Container-based Model Deployment



Correction LayerCorrection Policy

Model Container (MC)
RPC

Caffe
MC

RPC
MC

RPC
MC

RPC

Model Abstraction Layer
Caching

Adaptive Batching

Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems
Ø Models run in separate processes as Docker containers

Ø Resource isolation



Correction LayerCorrection Policy

Model Abstraction Layer
Caching

Adaptive Batching

Model Container (MC)
RPC

Caffe
MC

RPC
MC

RPC
MC

RPC
MC

RPC
MC

RPC

Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems
Ø Models run in separate processes as Docker containers

Ø Resource isolation
Ø Scale-out

Problem: frameworks optimized for batch processing not latency



A single 
page load 
may generate
many queries

Batching to Improve Throughput
Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead



A single 
page load 
may generate
many queries

Clipper Solution:

Adaptively tradeoff latency and throughput…

Ø Inc. batch size until the latency objective 
is exceeded (Additive Increase)

Ø If latency exceeds SLO cut batch size by 
a fraction (Multiplicative Decrease)

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead

Ø Optimal batch depends on:
Ø hardware configuration
Ø model and framework
Ø system load

Batching to Improve ThroughputAdaptive



Throughput
(Queries Per Second)

Tensor Flow Conv. Net (GPU)

Batch Size

Better



Tensor Flow Conv. Net (GPU)

Batch Size

Latency (ms)

Throughput
(Queries Per Second)

Better

Better



Tensor Flow Conv. Net (GPU)

Batch Size

Optimal Batch Size

Latency (ms)

Throughput
(Queries Per Second)

Better

Better



1R-2S

RandRP )RreVt

(6KOearn)
LLnear 690

(3y6SarN)
LLnear 690

(6KLearn)
KerneO 690

(6KLearn)

LRg RegreVVLRn

(6KLearn)

0
20000
40000
60000

8963

317 7206
1920

203 1921

1R BatFKLng

Throughput
(QPS)

Better



Throughput
(QPS)

1R-2S

5andRP )RreVt

(6KOearn)
LLnear 690

(3y6SarN)
LLnear 690

(6KLearn)
KerneO 690

(6KLearn)

LRg 5egreVVLRn

(6KLearn)

0
20000
40000
60000 48386

22859
29350 48934

197

47219

8963

317 7206
1920

203 1921

AdaStLve 1R BatFKLng
Better



0
20000
40000
60000 48386

22859
29350 48934

197

47219

8963

317 7206
1920

203 1921

AdaStLve 1R BatFKLng

1R-2S

5andRP )RreVt

(6KOearn)
LLnear 690

(3y6SarN)
LLnear 690

(6KLearn)
KerneO 690

(6KLearn)

LRg 5egreVVLRn

(6KLearn)

0

20

40
20 20 20 20

28
20

0 5 0 0
5

0

P99 Latency
(ms)

20 ms is
Fast Enough

Throughput
(QPS)

Better

Better



Throughput
(QPS)

0
20000
40000
60000 48386

22859
29350 48934

197

47219

8963
317 7206

1920
203 1921

AdaStLve 1R BatFKLng

0
20
40

20 20 20 20 28
20

0 5 0 0 5 0

1R-2S

5andRP )RreVt

(6KOearn)
LLnear 690

(3y6SarN)
LLnear 690

(6KLearn)
KerneO 690

(6KLearn)

LRg 5egreVVLRn

(6KLearn)

0

1000
1304

490 632

1318

3

1224

P99 Latency
(ms)

Batch Size



Overhead of decoupled architecture

Clipper

Predict FeedbackRPC/REST Interface

Caffe
MC MC MC

RPC RPC RPC RPC

Applications

MC



TensorFlow-
Serving

Predict RPC Interface

Applications

Overhead of decoupled architecture

Clipper
Predict FeedbackRPC/REST Interface

Caffe
MC MC MC

RPC RPC RPC RPC

Applications

MC



Clipper
Predict FeedbackRPC/REST Interface

Caffe
MC MC MC

RPC RPC RPC RPC

Applications

Model Container

TensorFlow-
Serving

Predict RPC Interface

Applications

Overhead of decoupled architecture



Overhead of decoupled architecture

Throughput
(QPS)

Better P99 Latency
(ms)

Better

Model: AlexNet trained on CIFAR-10



Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

MC MC MC
RPC RPC RPC RPC

Model Abstraction Layer
Provide a common interface to models
while bounding latency and 
maximizing throughput.

Model Selection LayerImprove accuracy through bandit methods and 
ensembles, online learning, and personalization

Model Container (MC)



Clipper

Ca
ffe

Version 1

Version 2

Version 3

Periodic retraining

Experiment with new 
models and frameworks

Model Selection LayerImprove accuracy through bandit methods and 
ensembles, online learning, and personalization



Ca
ffe

“CAT”
“CAT”
“CAT”
“CAT”

“CAT”
CONFIDENT

Selection Policy: Estimate confidence

Policy

Version 2

Version 3



Ca
ffe

“CAT”
“MAN”
“CAT”
“SPACE”

“CAT”
UNSURE

Selection Policy: Estimate confidence

Policy



ensemEle 4-agree 5-agree
0.0

0.2

0.4

7R
p-

5 
E

rr
Rr

 5
at

e

0.0586 0.0469

0.3182

0.0327

0.1983

Image1et

cRnIident unsurecRnIident unsure

Better

Selection Policy: Estimate confidence



ensemEle 4-agree 5-agree
0.0

0.2

0.4

7R
p-

5 
E

rr
Rr

 5
at

e

0.0586 0.0469

0.3182

0.0327

0.1983

Image1et

cRnIident unsurecRnIident unsure

Better

width is 
percentage of 

query workloads

Selection Policy: Estimate confidence



Clipper
Model Selection LayerSelection Policy

Selection policies supported by Clipper
ØExploit multiple models to estimate confidence
Ø Use multi-armed bandit algorithms to learn 

optimal model-selection online
Ø Online personalization across ML frameworks

*See paper for details



Conclusion
Ø Prediction-serving is an important and challenging area for systems 

research
Ø Support low-latency, high-throughput serving workloads
Ø Serve large and growing ecosystem of ML frameworks

Ø Clipper is a first step towards addressing these challenges
Ø Simplifies deployment through layered architecture
Ø Serves many models across ML frameworks concurrently
Ø Employs caching, adaptive batching, container scale-out to meet interactive 

serving workload demands
Ø Beyond academic prototype to build a real, open-source system

https://github.com/ucbrise/clipper
crankshaw@cs.berkeley.edu



0

5

10
TK

rR
ug

Kp
ut

(1
0K

 T
ps

) Agg 10Gbps
Agg 1Gbps

0ean 10Gbps
0ean 1Gbps

1 2 3 4
1uPber Rf 5eplLcas

0

100

200

La
te

nc
y 

(P
s) 0ean 10Gbps

399 10Gbps
0ean 1Gbps
399 1Gbps

GPU Cluster Scaling


