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ABSTRACT

Caffe provides multimedia scientists and practitioners with
a clean and modifiable framework for state-of-the-art deep
learning algorithms and a collection of reference models.
The framework is a BSD-licensed C++ library with Python
and MATLAB bindings for training and deploying general-
purpose convolutional neural networks and other deep mod-
els efficiently on commodity architectures. Caffe fits indus-
try and internet-scale media needs by CUDA GPU computa-
tion, processing over 40 million images a day on a single K40
or Titan GPU (= 2.5 ms per image). By separating model
representation from actual implementation, Caffe allows ex-
perimentation and seamless switching among platforms for
ease of development and deployment from prototyping ma-
chines to cloud environments.

Caffe is maintained and developed by the Berkeley Vi-
sion and Learning Center (BVLC) with the help of an ac-
tive community of contributors on GitHub. It powers on-

1. INTRODUCTION

A key problem in multimedia data analysis is discovery of
effective representations for sensory inputs—images, sound-
waves, haptics, etc. While performance of conventional,
handecrafted features has plateaued in recent years, new de-
velopments in deep compositional architectures have kept
performance levels rising [8]. Deep models have outper-
formed hand-engineered feature representations in many do-
mains, and made learning possible in domains where engi-
neered features were lacking entirely.

We are particularly motivated by large-scale visual recog-
nition, where a specific type of deep architecture has achieved
a commanding lead on the state-of-the-art. These Con-
volutional Neural Networks, or CNNs, are discriminatively
trained via back-propagation through layers of convolutional
filters and other operations such as rectification and pooling.
Following the early success of digit classification in the 90’s,
these models have recently surpassed all known methods for
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Abstract

We propose a parameter server framework to solve distributed machine learning
problems. Both data and workload are distributed into client nodes, while server
nodes maintain globally shared parameters, which are represented as sparse vec-
tors and matrices. The framework manages asynchronous data communications
between clients and servers. Flexible consistency models, elastic scalability and
fault tolerance are supported by this framework. We present algorithms and theo-
retical analysis for challenging nonconvex and nonsmooth problems. To demon-
strate the scalability of the proposed framework, we show experimental results on
real data with billions of parameters.
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Prediction-Serving for interactive applications
Timescale: ~10s of milliseconds



Prediction-Serving Raises
New Challenges
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Support low-latency, high-throughput serving workloads

Models getting more complex
» 10s of GFLOPs [1]

Deployed on critical path — Using specialized hardware
> Maintain SLOs under heavy load for predictions

[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.
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Serving

Google # 0 &

Translate Turn off instant translation o

Invented New Hardware!

140 billion words a day’ Tensor Processing Unit

82,000 GPUs
running 24/7

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html




Big Companies Build One-Off Systems

Problems:

» Expensive 1o build and maintain

» Highly specialized and require ML and
systems expertise

» Tightly-coupled model and application
» Difficult to change or update model
» Only supports single ML framework
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Large and growing ecosystem of ML models and frameworks
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Large and growing ecosystem of ML models and frameworks

Difficult to deploy and
brittle to manage

Varying physical
resource requirements



But most companies
can't build new
serving systems...



Use existing systems: Offline Scoring
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Use existing systems: Offline Scoring
Datastore
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Batch Analytics



Use existing systems: Offline Scoring
Look up decision in datastore
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Use existing systems: Offline Scoring

Problems:
» Requires full set of queries ahead of time
» Small and bounded input domain

» \Wasted computation and space
» (Can render and store unneeded predictions

» Costly to update
» Re-run batch job
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throughput serving workloads



How does Clipper address
these challenges?



Clipper Solutions

d Simplifies deployment through layered
architecture

d Serves many models across ML
frameworks concurrently

J Employs caching, batching, scale-out
for high-performance serving
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Clipper Architecture

Predict I RPC/REST Interface I Observe

Improve accuracy through bandit methods and

ensembles, online learning, and personalization Model Selectlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Container (MC)

APACHE




Clipper Architecture
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Clipper Implementation

Predict I RPC/ REST Interface IObserve
Clipper

Core system: 5000 lines of Rust

RPC:

100 lines of Python
o 250 lines of Rust

o 200 lines of C++




Model Abstraction Layer
Adaptive Batching cHion Laye

RPCI RPCI RPCI RPCI
Model Container (MC)

quf'\z Caffe 1_~




RPCI RPCI RPCI RPCI
Model Container (MC)

Spqﬁlg Caffe 1~

Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems



Container-based Model Deployment
Implement Model API:

class ModelContainer:
def init (model data)
def predict batch(inputs)



Container-based Model Deployment

Implement Model API:

class ModelContainer:
def init (model data)
def predict batch(inputs)

» |Implemented in many languages

» Python
» Java
> C/C++



Container-based Model Deployment

Model implementation packaged in container

Model Container (MC)

class ModelContainer:
def init (model data)
def predict batch(inputs)

sk




Container-based Model Deployment

Clipper
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RPCI RPCI RPCI RPCI
Model Container (MC)

SpQr‘I,(\Z Caffe 1_\'

Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation
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Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation

> Scale-out

Problem: frameworks optimized for batch processing not latency




Batching to Improve Throughput

» Why batching helps: » Optimal batch depends on:
» hardware configuration
A single » model and framework

page load » system load

may generate
many queries

Hardware |
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Adaptive Batching to Improve Throughput

» Why batching helps:

A single

page loaa
may generate
many queries

Hardware
Acceleration

tGRPC“ Is_lyes!tloesrrfl rg\?errtikfeead

» Optimal batch depends on:
» hardware configuration
» model and framework
» system load

Clipper Solution:
Adaptively tradeoff latency and throughput...

» Inc. batch size until the latency objective
IS exceeded (Additive Increase)

> If latency exceeds SLO cut batch size by
a fraction (Multiplicative Decrease)
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Tensor Flow Conwv. Net (GPU)
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Tensor Flow Conwv. Net (GPU)
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[ 1 Adaptive B No Batching
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[ 1 Adaptive B No Batching
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Overhead of decoupled architecture

Predict § RPC/REST Interface ~ § Feedback

Caffe 1,“




Overhead of decoupled architecture
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Overhead of decoupled architecture

.........
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Overhead of decoupled architecture

Model: AlexNet trained on CIFAR-10
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Clipper Architecture

Predict I RPC/REST Interface I Observe

Improve accuracy through bandit methods and

ensembles, online learning, and personalization Model Selectlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Container (MC)
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Improve accuracy through bandit methods and
ensembles, online learning, and personalization

Model Selection Layer
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Selection Policy: Estimate confidence
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Selection Policy: Estimate confidence
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Selection Policy: Estimate confidence
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Selection Policy: Estimate confidence
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Selection Policy Model Selection Layer

Selection policies supported by Clipper

» Exploit multiple models to estimate confidence

» Use multi-armed bandit algorithms to learn
optimal model-selection online

» Online personalization across ML frameworks

*See paper for details



Conclusion

» Prediction-serving is an important and challenging area for systems
research

> Support low-latency, high-throughput serving workloads
» Serve large and growing ecosystem of ML frameworks
» Clipper is a first step towards addressing these challenges
»  Simplifies deployment through layered architecture
» Serves many models across ML frameworks concurrently

» Employs caching, adaptive batching, container scale-out to meet interactive
serving workload demands

» Beyond academic prototype to build a real, open-source system

https://github.com/ucbrise/clipper

crankshaw@cs.berkeley.edu



GPU Cluster Scaling
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