drise

|
I p p e r UC Berkeley

A Low-Latency Onllne Predlctlon
Serving System

Daniel Crankshaw

Xin Wang, Giulio Zhou,
Michael Franklin, Joseph Gonzalez, lon Stoica

NSDI 2017
March 29, 2017

TensorFlow: A system for large-scale machine learning

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isa)
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Be
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xi

Abstract

TensorFlow is a machine learning system that operates at first-generation system,

Learning

GraphLab: A New Framework For Parallel Machine Learning

Yucheng Low Joseph Gonzalez

Google Brain

datasets, and moving tJ
based TensorFlow on m|

Carnegie Mellon University
ylow@cs.cmu.edu

Carnegie Mellon University
jegonzal @cs.cmu.edu

Danny Bickson
Carnegie Mellon University

Carlos Guestrin
Carnegie Mellon University

Aapo Kyrola

Carnegie Mellon University

akyrola@cs.cmu.edu

Joseph M. Hellerstein

UC Berkeley

Spark: Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica

University of California, Berkeley

Project Adam: Building an Efficient and Scalable Deep
Learning Training System

Trishul Chilimbi Yutaka Suzue

Microsoft Research

Johnson Apacible Karthik Kalyanaraman

ly successful
applications
hese systems
1 that is not
is paper fo-
se that reuse
1 operations.
o algorithms,
Ve propose a

hese applica- This paper

MapReduce/Dryad job, each job must reload the

from disk, incurring a significant performance pen
Interactive analytics: Hadoop is often used to
ad-hoc exploratory queries on large datasets, throf
SQL interfaces such as Pig [21] and Hive [1]. Ide;
a user would be able to load a dataset of interest

memory across a number of machines and query i
peatedly. However, with Hadoop, each query ing
significant latency (tens of seconds) because it rury
a separate MapReduce job and reads data from di:

ABSTRACT
Large deep neural
demonstrated state-q
recognition tasks.
extremely time con:
amount of compute
implementation of o
comprised of comm(
models that exhibits
and task accuracy of
achieves high efficie}
system co-design
workload computatic
asynchrony throug]
performance and shoj
accuracy of trained
more efficient and]
thought possible and]
a large 2 billion
accuracy in comparg
category image clasg
previously held the rf
show that task accui]
Our results provid
distributed systems-
using current training

1. INTRODUC
Traditional statistical
table of data and a
table correspond to

columns correspond|
underlying data set.

algorithms can be a

Caffe: Convolutional Architecture
for Fast Feature Embedding’

Yangging Jia*, Evan Shelhamer-, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, Trevor Darrell
SUBMITTED to ACM MULTIMEDIA 2014 OPEN SOURCE SOFTWARE COMPETITION
UC Berkeley EECS, Berkeley, CA 94702
{jiayq,shelhamer,jdonahue,sergeyk,jonlong,rbg,sguada,trevor}@eecs.berkeley.edu

ABSTRACT

Caffe provides multimedia scientists and practitioners with
a clean and modifiable framework for state-of-the-art deep
learning algorithms and a collection of reference models.
The framework is a BSD-licensed C++ library with Python
and MATLAB bindings for training and deploying general-
purpose convolutional neural networks and other deep mod-
els efficiently on commodity architectures. Caffe fits indus-
try and internet-scale media needs by CUDA GPU computa-
tion, processing over 40 million images a day on a single K40
or Titan GPU (= 2.5 ms per image). By separating model
representation from actual implementation, Caffe allows ex-
perimentation and seamless switching among platforms for
ease of development and deployment from prototyping ma-
chines to cloud environments.

Caffe is maintained and developed by the Berkeley Vi-
sion and Learning Center (BVLC) with the help of an ac-
tive community of contributors on GitHub. It powers on-

1. INTRODUCTION

A key problem in multimedia data analysis is discovery of
effective representations for sensory inputs—images, sound-
waves, haptics, etc. While performance of conventional,
handecrafted features has plateaued in recent years, new de-
velopments in deep compositional architectures have kept
performance levels rising [8]. Deep models have outper-
formed hand-engineered feature representations in many do-
mains, and made learning possible in domains where engi-
neered features were lacking entirely.

We are particularly motivated by large-scale visual recog-
nition, where a specific type of deep architecture has achieved
a commanding lead on the state-of-the-art. These Con-
volutional Neural Networks, or CNNs, are discriminatively
trained via back-propagation through layers of convolutional
filters and other operations such as rectification and pooling.
Following the early success of digit classification in the 90’s,
these models have recently surpassed all known methods for

Tarrn arala wietral warmmaniting and hawe banr odarmdod bae T

a new cluster computing fraj

GraphX: Graph Processing in a Distributed Dataflow Framework

Joseph E. Gonzalez", Reynold S. Xin*t, Ankur Dave”, Daniel Crankshaw”

Michael J. Franklin®, Ion Stoica™t
*UC Berkeley AMPLab 1 Databricks

Abstract

| Pageranc || commecea || core |z

hich supports apr=
Viding similar scall
MapReduce.

in Spark is that o
which represents
oned across a set
tion is lost. Use:
ory across machif
E-like parallel op.
through a notion
lost, the RDD h4
hs derived from o
t partition. Alth
lemory abstractiony
Expressivity on th|
y on the other haj
for a variety of ap)
d in Scala [5], a
o language for the
brogramming intel
lddition, Spark cal
d version of the §
to define RDDs,
e them in parallel]
Spark is the first
[pose programmin
beess large datase!
hentation of Spark
ith the system is ¢
tperform Hadoop
orkloads and can
ataset with sub-sq

ed as follows. Sed

Parameter Server for Distributed Machine Learning

Mu Li!, Li Zhou', Zichao Yang', Aaron Li*, Fei Xia®,
David G. Andersen' and Alexander Smola’*
!Carnegie Mellon University
2Google Strategic Technologies
{muli, lizhou, zichaoy, aaronli, feixia, dga} @cs.cmu.edu, alex@smola.org

Abstract

We propose a parameter server framework to solve distributed machine learning
problems. Both data and workload are distributed into client nodes, while server
nodes maintain globally shared parameters, which are represented as sparse vec-
tors and matrices. The framework manages asynchronous data communications
between clients and servers. Flexible consistency models, elastic scalability and
fault tolerance are supported by this framework. We present algorithms and theo-
retical analysis for challenging nonconvex and nonsmooth problems. To demon-
strate the scalability of the proposed framework, we show experimental results on
real data with billions of parameters.

Learning

o =0

Complex Model

Learning Produces a Trained Model

Query Decision

. “CAT”

Learning Serving

Model ——
Appllcatlon

Model
Application

Prediction-Serving for interactive applications
Timescale: ~10s of milliseconds

Prediction-Serving Raises
New Challenges

Prediction-Serving Challenges

»

KAEDI

1’~ dmlc

'@«
Caffaensortlow mxnet @

[arge and growing ecosystem

Support low-latency, high- of ML models and frameworks
throughput serving workloads

Support low-latency, high-throughput serving workloads

Models getting more complex
» 10s of GFLOPs [1]

Deployed on critical path — Using specialized hardware
> Maintain SLOs under heavy load for predictions

[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

GO Og/ (; ; I a I ; \‘ ; / a t(; Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi

yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, f.ukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Serving

Google # 0 &

Translate Turn off instant translation o

Invented New Hardware!

140 billion words a day’ Tensor Processing Unit

82,000 GPUs
running 24/7

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Big Companies Build One-Off Systems

Problems:

» Expensive 1o build and maintain

» Highly specialized and require ML and
systems expertise

» Tightly-coupled model and application
» Difficult to change or update model
» Only supports single ML framework

Prediction-Serving Challenges

»

KARDI

1’~ dmlc

'@«
Caffaensortlow mxnet @

[arge and growing ecosystem

Support low-latency, high- of ML models and frameworks
throughput serving workloads

Large and growing ecosystem of ML models and frameworks

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation

LGN S 3 <
o = =
" = |
H -
S
- ~ S

"7’* .
S w
thealno/ DatC :

APACHE Crdpte n..hJ mic “ 7 : ‘
Sp QF”(\Z Caffe Tensor xnet @KALD!

Large and growing ecosystem of ML models and frameworks

Difficult to deploy and
brittle to manage

Varying physical
resource requirements

But most companies
can't build new
serving systems...

Use existing systems: Offline Scoring

=]le
Data

Model

|_'_l

Batch Analytics

Use existing systems: Offline Scoring
Datastore

—

Batch Analytics

Use existing systems: Offline Scoring
Look up decision in datastore

-)W

X Y

— _ I
Application

|—'—l

Low-Latency Serving

Use existing systems: Offline Scoring

Problems:
» Requires full set of queries ahead of time
» Small and bounded input domain

» \Wasted computation and space
» (Can render and store unneeded predictions

» Costly to update
» Re-run batch job

Prediction-Serving Challenges

»

KALDI

1’~ dmlc

'@«
Caffaensortlow mxnet @

[arge and growing ecosystem

Support low-latency, high- of ML models and frameworks
throughput serving workloads

How does Clipper address
these challenges?

Clipper Solutions

d Simplifies deployment through layered
architecture

d Serves many models across ML
frameworks concurrently

J Employs caching, batching, scale-out
for high-performance serving

Predict §

Model Container (MC)

SEETKE

\‘\\\‘:' aSSS
3 -

RPC/REST Interface

RPCY

?

Clipper Decouples Applications and Models

AT\

4 \ 1ch fli == WMl bo Canads
. 'Y legemm)n thirsty

I Feedback

RPCY

Clipper Architecture

Predict I RPC/REST Interface I Observe

Improve accuracy through bandit methods and

ensembles, online learning, and personalization Model Selectlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Container (MC)

APACHE

Clipper Architecture

R

T <= = NETFLIX

W,
e —

—
—~—

Predict I PC/REST Interface IObserve
Clipper

Selection Policy Model Selection Layer

.
_ _ Model Abstraction Layer
Adaptive Batching

=S ———

RPCY rRrcf ReCl
Model Container (MC)

Y
C~ffn

o

Clipper Implementation

Predict I RPC/ REST Interface IObserve
Clipper

Core system: 5000 lines of Rust

RPC:

100 lines of Python
o 250 lines of Rust

o 200 lines of C++

Model Abstraction Layer
Adaptive Batching cHion Laye

RPCI RPCI RPCI RPCI
Model Container (MC)

quf'\z Caffe 1_~

RPCI RPCI RPCI RPCI
Model Container (MC)

Spqﬁlg Caffe 1~

Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems

Container-based Model Deployment
Implement Model API:

class ModelContainer:
def init (model data)
def predict batch(inputs)

Container-based Model Deployment

Implement Model API:

class ModelContainer:
def init (model data)
def predict batch(inputs)

» |Implemented in many languages

» Python
» Java
> C/C++

Container-based Model Deployment

Model implementation packaged in container

Model Container (MC)

class ModelContainer:
def init (model data)
def predict batch(inputs)

sk

Container-based Model Deployment

Clipper

RPCI rRrcf ReC] RPC]
) § __MC_ _ . MC

spark’ || Caffe O tearn

RPCI RPCI RPCI RPCI
Model Container (MC)

SpQr‘I,(\Z Caffe 1_\'

Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation

RPC] rrc] Rec] RPcl RPC] RPC
el Container (MC) -~ mc f wvmc | mc R MC

,Q,‘,’g Caffe 1,~ 1,\' 1,~

Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes as Docker containers
» Resource isolation

> Scale-out

Problem: frameworks optimized for batch processing not latency

Batching to Improve Throughput

» Why batching helps: » Optimal batch depends on:
» hardware configuration
A single » model and framework

page load » system load

may generate
many queries

Hardware |
Acceleration |

"G RPC1 Is_lyes!tloesrrfl rg\?errtirfeead

Adaptive Batching to Improve Throughput

» Why batching helps:

A single

page loaa
may generate
many queries

Hardware
Acceleration

tGRPC“ Is_lyes!tloesrrfl rg\?errtikfeead

» Optimal batch depends on:
» hardware configuration
» model and framework
» system load

Clipper Solution:
Adaptively tradeoff latency and throughput...

» Inc. batch size until the latency objective
IS exceeded (Additive Increase)

> If latency exceeds SLO cut batch size by
a fraction (Multiplicative Decrease)

Tensor Flow Conwv. Net (GPU)

Bette,iSOOO

10000 |

Throughput
(Queries Per Second)

5000 |-

0

0 50 100 150 200 250 300

Batch Size

Tensor Flow Conwv. Net (GPU)

BetterlSOOO | | | “
10000]
Throughput
(Queries Per Second) =~ ™| :
0

30} :
jol Peadline _
Latency (ms) Lol _

Better
0

0 50 100 150 200 250 300
Batch Size

Tensor Flow Conwv. Net (GPU)

Better

15000

10000 |

Throughput
(Queries Per Second)

Latency (ms) l

Better

0

30}

20

10+

0

5000 -

Deadline

0

50

100 150 | 200
Batch Size

250

300

Better
Throughput 50000
(QPS) 40000
20000

B No Batching

[1 Adaptive B No Batching

Better
© ™ (o)
Throughput 60000 b‘%’b% N © b‘%& ‘;‘\’lﬁ\
%) ots
(QPS) o | & T e [e \
Jo oSt Q0 Q0 QOO o
WO ?2:\\ ¢ 20 e 69«\\ e((\e\ e o) eg(@%?(\\\
@'\g ot \?*6\) Ve et e

Better
Throughput 60000
(QPS) 40000
20000
0
40
P99 Latency .
(ms)

0

20 ms is Better

Fast Enough

[1 Adaptive
©
b?’(b% 3
o)
i P’
> ©
R A Ua
o5 \
N N N
o ke Il
ch W
R o
02 Y e0?

B No Batching

b S
o N
2 i
Q N
ESORNC S
R
N N
1)
Q L Q
W W OO
%Q \ \%Q \ 65\
X 0 o e@‘e)
\ OO

[1 Adaptive B No Batching

P o N
&> o e AV
Throughput $9999 _* R '9%6@ ‘* X
© g2 Q Q N
(QPS) 2000 8 o X [l SV I OV
q/‘b

P99 Latency
(ms)

Batch Size

Overhead of decoupled architecture

Predict § RPC/REST Interface ~ § Feedback

Caffe 1,“

Overhead of decoupled architecture

g NETELIN oW

o S

o Predict § RPC Interface
Predict § RPC/REST Interface § Feedback !

TensorFlow-
Serving

Clipper

rrcy Rrec§ Recl

f

TensorFlow

Overhead of decoupled architecture

.........

Predict § RPC/REST Interface § Feedback predict§ RPC Interface

Clipper

S |

TensorFlow-

Serving

1 | rrcy Rrecl

AAAAAA

Overhead of decoupled architecture

Model: AlexNet trained on CIFAR-10

60
6000 5519 5472 47.04 46.75

Better P99 Latency
4000 (ms)
I 2000
Throughput
(QPS) Better

Clipper Architecture

Predict I RPC/REST Interface I Observe

Improve accuracy through bandit methods and

ensembles, online learning, and personalization Model Selectlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Container (MC)

APACHE

Improve accuracy through bandit methods and
ensembles, online learning, and personalization

Model Selection Layer

M Version 1 | | .
.m Version 2 PeI’IOO'IC retfalnlﬂg

:a: : Version 3
Experiment with new
g : I models and frameworks

) 2=
e
‘ Cec
D LY ¥
] “".,:j I
L

TensorFlow

Caffe

Selection Policy: Estimate confidence

§ g@f.onz
§ Ve (0]1) &}

“CAT”
™ “CAT” g “CAT”
“CAT” fr—
%,I/ “CAT” &< CONFIDENT
@ —

Caffe

Selection Policy: Estimate confidence

“CAT”

AN g “CAT”

“CAT” [

«SPACE” | 2 UNSURE
—

Selection Policy: Estimate confidence

8 ImageNet
&U B confident [] unsure
o 0.4 0.3182
Better = :
LL 0.1983
0 0.2
- 0.0586 0.0469 0.0327
2 0.0 | J

ensemble 4-agree S-agree

Selection Policy: Estimate confidence

O ImageNet
&U B confident [1 unsure
5 0.4
-
LLI
"? 0.2
Better Q- 0.0586
@)
— 0.0
ensemble

width is
percentage of
query workloads

Selection Policy Model Selection Layer

Selection policies supported by Clipper

» Exploit multiple models to estimate confidence

» Use multi-armed bandit algorithms to learn
optimal model-selection online

» Online personalization across ML frameworks

*See paper for details

Conclusion

» Prediction-serving is an important and challenging area for systems
research

> Support low-latency, high-throughput serving workloads
» Serve large and growing ecosystem of ML frameworks
» Clipper is a first step towards addressing these challenges
» Simplifies deployment through layered architecture
» Serves many models across ML frameworks concurrently

» Employs caching, adaptive batching, container scale-out to meet interactive
serving workload demands

» Beyond academic prototype to build a real, open-source system

https://github.com/ucbrise/clipper

crankshaw@cs.berkeley.edu

GPU Cluster Scaling

N
o

Throughput
(10K gps)
(@)

N
o
oo

Latency (ms)
S
o

—®—- Agg 10Gbps
—4— Agg 1Gbps

— = Mean 10Gbps

- + = Mean 1Gbps
O

——- *

N " mm Ll e o F. -_ I | —_— | | I | | |

@
.‘

— = Mean 10Gbps
—@- P99 10Gbps

= + = Mean 1Gbps

—4— P99 1Gb

1 2

3

Number of Replicas

