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Models getting more complex
Ø 10s of GFLOPs [1]

Support low-latency, high-throughput serving workloads

Using specialized hardware 
for predictions

Deployed on critical path
Ø Maintain SLOs under heavy load

[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.



Google Translate

Serving

82,000 GPUs 
running 24/7

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

140 billion words a day1
Invented New Hardware!
Tensor Processing Unit 

(TPU)



Big Companies Build One-Off Systems

Problems:
Ø Expensive to build and maintain

Ø Highly specialized and require ML and 
systems expertise

Ø Tightly-coupled model and application
Ø Difficult to change or update model

Ø Only supports single ML framework
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But most companies 
can’t build new 

serving systems…
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Application

Decision

Query

Look up decision in datastore

Low-Latency Serving

X Y

Problems:
Ø Requires full set of queries ahead of time

Ø Small and bounded input domain
Ø Wasted computation and space

Ø Can render and store unneeded predictions
Ø Costly to update

Ø Re-run batch job

Use existing systems: Offline Scoring



Prediction-Serving Challenges

Support low-latency, high-
throughput serving workloads
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Large and growing ecosystem 
of ML models and frameworks



How does Clipper address 
these challenges?



q Simplifies deployment through layered 
architecture

q Serves many models across ML 
frameworks concurrently

q Employs caching, batching, scale-out 
for high-performance serving

Clipper Solutions
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Clipper Architecture
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Model Abstraction Layer
Provide a common interface to models
while bounding latency and 
maximizing throughput.

Model Selection LayerImprove accuracy through bandit methods and 
ensembles, online learning, and personalization

Model Container (MC)



Clipper Architecture

Clipper
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Model Abstraction Layer
Caching

Adaptive Batching
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Clipper Implementation

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

MC MC MC
RPC RPC RPC RPC

Model Abstraction Layer
Caching

Adaptive Batching

Model Container (MC)

ustCore system: 5000 lines of Rust

RPC:
• 100 lines of Python
• 250 lines of Rust
• 200 lines of C++



Model Container (MC)

Caffe

Correction LayerCorrection Policy

MC MC MC
RPC RPC RPC

Model Abstraction Layer
Caching

Adaptive Batching

Provide a common interface to models while 

RPC



Correction LayerCorrection Policy

Model Container (MC)
RPC

Caffe
MC

RPC
MC

RPC
MC

RPC

Model Abstraction Layer
Caching

Adaptive Batching

Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems



Container-based Model Deployment

class ModelContainer:
def __init__(model_data)
def predict_batch(inputs)

Implement Model API:



class ModelContainer:
def __init__(model_data)
def predict_batch(inputs)

Implement Model API:

Ø Implemented in many languages
Ø Python
Ø Java
Ø C/C++

Container-based Model Deployment



Model implementation packaged in container

Model Container (MC)

Container-based Model Deployment

class ModelContainer:
def __init__(model_data)
def predict_batch(inputs)
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Container-based Model Deployment
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Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems
Ø Models run in separate processes as Docker containers

Ø Resource isolation



Correction LayerCorrection Policy

Model Abstraction Layer
Caching

Adaptive Batching

Model Container (MC)
RPC

Caffe
MC

RPC
MC

RPC
MC

RPC
MC

RPC
MC

RPC

Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems
Ø Models run in separate processes as Docker containers

Ø Resource isolation
Ø Scale-out

Problem: frameworks optimized for batch processing not latency



A single 
page load 
may generate
many queries

Batching to Improve Throughput
Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead



A single 
page load 
may generate
many queries

Clipper Solution:

Adaptively tradeoff latency and throughput…

Ø Inc. batch size until the latency objective 
is exceeded (Additive Increase)

Ø If latency exceeds SLO cut batch size by 
a fraction (Multiplicative Decrease)

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead

Ø Optimal batch depends on:
Ø hardware configuration
Ø model and framework
Ø system load

Batching to Improve ThroughputAdaptive



Throughput
(Queries Per Second)

Tensor Flow Conv. Net (GPU)

Batch Size

Better



Tensor Flow Conv. Net (GPU)

Batch Size

Latency (ms)

Throughput
(Queries Per Second)

Better

Better



Tensor Flow Conv. Net (GPU)
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Overhead of decoupled architecture
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Model: AlexNet trained on CIFAR-10



Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

MC MC MC
RPC RPC RPC RPC

Model Abstraction Layer
Provide a common interface to models
while bounding latency and 
maximizing throughput.

Model Selection LayerImprove accuracy through bandit methods and 
ensembles, online learning, and personalization

Model Container (MC)



Clipper
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Version 1

Version 2

Version 3

Periodic retraining

Experiment with new 
models and frameworks

Model Selection LayerImprove accuracy through bandit methods and 
ensembles, online learning, and personalization
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Clipper
Model Selection LayerSelection Policy

Selection policies supported by Clipper
ØExploit multiple models to estimate confidence
Ø Use multi-armed bandit algorithms to learn 

optimal model-selection online
Ø Online personalization across ML frameworks

*See paper for details



Conclusion
Ø Prediction-serving is an important and challenging area for systems 

research
Ø Support low-latency, high-throughput serving workloads
Ø Serve large and growing ecosystem of ML frameworks

Ø Clipper is a first step towards addressing these challenges
Ø Simplifies deployment through layered architecture
Ø Serves many models across ML frameworks concurrently
Ø Employs caching, adaptive batching, container scale-out to meet interactive 

serving workload demands
Ø Beyond academic prototype to build a real, open-source system

https://github.com/ucbrise/clipper
crankshaw@cs.berkeley.edu
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