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CLIENT

INVALID COMMAND ATTACKS
INVALID COMMAND

Client exhibits behavior, as seen 
by the server, that is inconsistent 
with the sanctioned client 
software.

Forms of Exploit:
1. Maliciously crafted packet
2. Valid packets; illegal sequence

SERVER

CLIENT SERVER Constrained attacker
(valid commands only)

Goal: constrain all attackers 
to this limited behavior.



TRANSPORT LAYER SECURITY (TLS) - RFC 5246

• Handshake Protocol
• Select cipher, authentication, key exchange

• Record Layer
• Provides confidentiality and integrity

• Encapsulates other protocols

• Alerts and Heartbeats

Application
(HTTP, IMAP, etc.)

Transport Layer 
Security (TLS)

TCP

IP
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From Jan 2014 to Aug 2016, most of  the server-side vulnerabilities in OpenSSL 
involved invalid commands (23 of  37 required tampering with client behavior).



HEARTBLEED (CVE-2014-0160)

• Implementation bug in OpenSSL TLS Heartbeat handler

•Nearly all OpenSSL applications vulnerable for 2 years

•17% (~500,000) of the Internet’s web servers
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HEARTBLEED

xkcd.com/1354 5



HOW CAN WE DEFEND THE SERVER?

• Behavioral verification: permit authorized client software’s behavior only
• Eliminates entire classes of attack without knowing about them

• Usually requires client modification or sending of client inputs

•Goal: rapid detection of exploit attempts
6



BEHAVIORAL VERIFICATION OF A CLIENT

•General case: undecidable

• Specific instances: may be practical

• E.g., detect cheating in online games (Cochran & Reiter 2013)

Given:
* client program P
* network messages M

Not given:
* client-side inputs

Question:
Could P have 
produced M?

Permit 
client to 
continue

Disconnect 
client, alert 
admin, etc.

Yes

No
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SYMBOLIC EXECUTION

8Example adapted from: Cristian Cadar, and Koushik Sen. "Symbolic 
execution for software testing: three decades later." Communications of 
the ACM 56.2 (2013): 82-90.

x = sym_input();
y = sym_input();
testme(x,y);

void testme(int x, int y)
{

int z = 2*y;
if (z == x) {

if (x > y+10)
printf(“lol”);

}
}

2*y == x

x > y+10

true

truefalse

false

!, # unconstrained

! ≠ 2#

! = 2# Ù
(! ≤ # + 10) ! = 2# Ù

(! > # + 10)

“lol”

x=30
y=15

Apply SAT solver to 
obtain concrete test 
case.



USING SYMBOLIC EXECUTION TO DETECT 
INVALID COMMAND ATTACKS

9

x = sym_input();
y = sym_input();
testme(x,y);

void testme(int x, int y)
{

int z = 2*y;
if (z == x) {

if (x > y+10)
send(z);

}
}

2*y == x

x > y+10

true

truefalse

false

!, # unconstrained

! ≠ 2#

! = 2#
Ù(! ≤ # + 10) ! = 2#

Ù(! > # + 10)Can this program produce…
• . = 42? Yes (! = 42, # = 21)
• . = 41? No (. = 2# so it must be even)

Ù 2# = 42

z



CHALLENGES IN VALIDATING CLIENTS 
IN CRYPTOGRAPHIC PROTOCOLS (1)

• Symbolic execution generally accommodates program variables with 
unknown values, but their sizes must be known

• Crypto protocols that hide sizes of client-side inputs (e.g., using 
padding) dramatically grow the search space

• Solution: Explore inputs of different sizes in parallel

Plaintext Padding

Plaintext Padding

or
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CHALLENGES IN VALIDATING CLIENTS 
IN CRYPTOGRAPHIC PROTOCOLS (2)
• Some functions are too costly to execute on symbolic inputs 

• Example: cryptographic functions
• AES block cipher is a very complex formula of key and plaintext

• Solution: 
• Give the verifier the session key

• Defer executing prohibitive functions until inputs can be inferred
• Any functions not executed then amount to assumptions

AES

Key

CiphertextPlaintext
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MULTIPASS SYMBOLIC EXECUTION

• Input: user specifies prohibitive functions, using an API

• Algorithm:
1. Run symbolic execution.

a) For each prohibitive function check if any inputs are symbolic

b) If so, “skip” the function: return unconstrained symbolic output

c) Otherwise, execute the function normally (all inputs are concrete)

2. Concretize any variables with unique solution

3. Repeat steps 1-2 until fixed point
12



RNG

RNG

STDIN

iv AES

ECDH
A

GHASH

a
k
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iv

Unobserved Inputs
(symbolic)

Observed Outputs
(concrete)

EXAMPLE: TLS CLIENT VALIDATION

x

x

Symbolic (unknown) value

Concrete (known) value

We assume knowledge of AES symmetric 
key, k, which is part of server state.  13

Message 
to verify
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ASSESSMENT: DETECTING HEARTBLEED
(WITHOUT LOOKING FOR IT)
•Malicious s_client
• performs handshake

• sends Heartbleed exploit

• Validation
• Handshake is verified

• No explanation found for 
malicious Heartbeat

Detection in ~2s
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MEASURING PERFORMANCE

VERIFIER

CLIENT SERVER

MESSAGE QUEUE
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PERFORMANCE EVALUATION

Diamond = mean

• 21 TLS 1.2 sessions from 3 min. 
of Gmail activity

• OpenSSL & BoringSSL
command line clients

• Single-core verifier (3.2 GHz)

• Cost: 49ms per TLS record

• Lag: median 0.85s, max 15s

NOTE: without server-to-client appdata packets
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OTHER EVALUATION MEASURES
• Parallelization / Stress Test
• TLS 1.2 + up to 128 bytes of padding (from draft TLS 1.3)

• 16-thread verifier keeps pace

• Invalid command attack: valid packets, illegal sequence
• CVE-2015-0205 client authentication vulnerability

• Verifier rejects attack traffic

• Confirm appropriateness of command line client
• Unmodified Chrome browser interacting with Apache server

• Verified using BoringSSL command line client 21



SUMMARY

•Behavioral verification for cryptographic clients
• Multipass symbolic execution handles cryptographic functions

• Parallelization optimizes search of large state spaces

•Detection of previously unknown client misbehavior
• E.g., a Heartbleed exploit with no Heartbleed-specific configuration

•Performance roughly keeps pace with real workload
• Behavioral verification on Gmail TLS sessions
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