
A SYSTEM TO VERIFY NETWORK
BEHAVIOR OF KNOWN
CRYPTOGRAPHIC CLIENTS

Andrew Chi, Robert A. Cochran, Marie Nesfield, Michael K. Reiter,
Cynthia Sturton

University of North Carolina at Chapel Hill

CLIENT

INVALID COMMAND ATTACKS
INVALID COMMAND

Client exhibits behavior, as seen
by the server, that is inconsistent
with the sanctioned client
software.

Forms of Exploit:
1. Maliciously crafted packet
2. Valid packets; illegal sequence

SERVER

CLIENT SERVER Constrained attacker
(valid commands only)

Goal: constrain all attackers
to this limited behavior.

TRANSPORT LAYER SECURITY (TLS) - RFC 5246

• Handshake Protocol
• Select cipher, authentication, key exchange

• Record Layer
• Provides confidentiality and integrity

• Encapsulates other protocols

• Alerts and Heartbeats

Application
(HTTP, IMAP, etc.)

Transport Layer
Security (TLS)

TCP

IP

3

From Jan 2014 to Aug 2016, most of the server-side vulnerabilities in OpenSSL
involved invalid commands (23 of 37 required tampering with client behavior).

HEARTBLEED (CVE-2014-0160)

• Implementation bug in OpenSSL TLS Heartbeat handler

•Nearly all OpenSSL applications vulnerable for 2 years

•17% (~500,000) of the Internet’s web servers

4

HEARTBLEED

xkcd.com/1354 5

HOW CAN WE DEFEND THE SERVER?

• Behavioral verification: permit authorized client software’s behavior only
• Eliminates entire classes of attack without knowing about them

• Usually requires client modification or sending of client inputs

•Goal: rapid detection of exploit attempts
6

BEHAVIORAL VERIFICATION OF A CLIENT

•General case: undecidable

• Specific instances: may be practical

• E.g., detect cheating in online games (Cochran & Reiter 2013)

Given:
* client program P
* network messages M

Not given:
* client-side inputs

Question:
Could P have
produced M?

Permit
client to
continue

Disconnect
client, alert
admin, etc.

Yes

No

7

SYMBOLIC EXECUTION

8Example adapted from: Cristian Cadar, and Koushik Sen. "Symbolic
execution for software testing: three decades later." Communications of
the ACM 56.2 (2013): 82-90.

x = sym_input();
y = sym_input();
testme(x,y);

void testme(int x, int y)
{

int z = 2*y;
if (z == x) {

if (x > y+10)
printf(“lol”);

}
}

2*y == x

x > y+10

true

truefalse

false

!, # unconstrained

! ≠ 2#

! = 2# Ù
(! ≤ # + 10) ! = 2# Ù

(! > # + 10)

“lol”

x=30
y=15

Apply SAT solver to
obtain concrete test
case.

USING SYMBOLIC EXECUTION TO DETECT
INVALID COMMAND ATTACKS

9

x = sym_input();
y = sym_input();
testme(x,y);

void testme(int x, int y)
{

int z = 2*y;
if (z == x) {

if (x > y+10)
send(z);

}
}

2*y == x

x > y+10

true

truefalse

false

!, # unconstrained

! ≠ 2#

! = 2#
Ù(! ≤ # + 10) ! = 2#

Ù(! > # + 10)Can this program produce…
• . = 42? Yes (! = 42, # = 21)
• . = 41? No (. = 2# so it must be even)

Ù 2# = 42

z

CHALLENGES IN VALIDATING CLIENTS
IN CRYPTOGRAPHIC PROTOCOLS (1)

• Symbolic execution generally accommodates program variables with
unknown values, but their sizes must be known

• Crypto protocols that hide sizes of client-side inputs (e.g., using
padding) dramatically grow the search space

• Solution: Explore inputs of different sizes in parallel

Plaintext Padding

Plaintext Padding

or

10

CHALLENGES IN VALIDATING CLIENTS
IN CRYPTOGRAPHIC PROTOCOLS (2)
• Some functions are too costly to execute on symbolic inputs

• Example: cryptographic functions
• AES block cipher is a very complex formula of key and plaintext

• Solution:
• Give the verifier the session key

• Defer executing prohibitive functions until inputs can be inferred
• Any functions not executed then amount to assumptions

AES

Key

CiphertextPlaintext

11

MULTIPASS SYMBOLIC EXECUTION

• Input: user specifies prohibitive functions, using an API

• Algorithm:
1. Run symbolic execution.

a) For each prohibitive function check if any inputs are symbolic

b) If so, “skip” the function: return unconstrained symbolic output

c) Otherwise, execute the function normally (all inputs are concrete)

2. Concretize any variables with unique solution

3. Repeat steps 1-2 until fixed point
12

RNG

RNG

STDIN

iv AES

ECDH
A

GHASH

a
k

p

s c t t

A

c

iv

Unobserved Inputs
(symbolic)

Observed Outputs
(concrete)

EXAMPLE: TLS CLIENT VALIDATION

x

x

Symbolic (unknown) value

Concrete (known) value

We assume knowledge of AES symmetric
key, k, which is part of server state. 13

Message
to verify

RNG

RNG

STDIN

iv AES

ECDH
A

GHASH

a
k

p

s c t t

A

c

iv

Unobserved Inputs
(symbolic)

Observed Outputs
(concrete)

TLS CLIENT VALIDATION
PASS 1(A): SYMBOLIC EXECUTION

x

x

Symbolic (unknown) value

Concrete (known) value

14

RNG

RNG

STDIN

iv AES

ECDH
A

GHASH

a
k

p

s c t t

A

c

iv

Unobserved Inputs
(symbolic)

Observed Outputs
(concrete)

TLS CLIENT VALIDATION
PASS 1(B): CONCRETIZATION

x

x

Symbolic (unknown) value

Concrete (known) value

15

RNG

RNG

STDIN

iv AES

ECDH
A

GHASH

a
k

p

s c t t

A

c

iv

Unobserved Inputs
(symbolic)

Observed Outputs
(concrete)

TLS CLIENT VALIDATION
PASS 2(A): SYMBOLIC EXECUTION

x

x

Symbolic (unknown) value

Concrete (known) value

16

RNG

RNG

STDIN

iv AES

ECDH
A

GHASH

a
k

p

s c t t

A

c

iv

Unobserved Inputs
(symbolic)

Observed Outputs
(concrete)

TLS CLIENT VALIDATION
PASS 2(B): CONCRETIZATION

x

x

Symbolic (unknown) value

Concrete (known) value

17

ASSESSMENT: DETECTING HEARTBLEED
(WITHOUT LOOKING FOR IT)
•Malicious s_client
• performs handshake

• sends Heartbleed exploit

• Validation
• Handshake is verified

• No explanation found for
malicious Heartbeat

Detection in ~2s
18

MEASURING PERFORMANCE

VERIFIER

CLIENT SERVER

MESSAGE QUEUE

19

Verification Cost

Time

3
2
1 Verification Lag

Arrival

M
es

sa
ge

PERFORMANCE EVALUATION

Diamond = mean

• 21 TLS 1.2 sessions from 3 min.
of Gmail activity

• OpenSSL & BoringSSL
command line clients

• Single-core verifier (3.2 GHz)

• Cost: 49ms per TLS record

• Lag: median 0.85s, max 15s

NOTE: without server-to-client appdata packets
20

OTHER EVALUATION MEASURES
• Parallelization / Stress Test
• TLS 1.2 + up to 128 bytes of padding (from draft TLS 1.3)

• 16-thread verifier keeps pace

• Invalid command attack: valid packets, illegal sequence
• CVE-2015-0205 client authentication vulnerability

• Verifier rejects attack traffic

• Confirm appropriateness of command line client
• Unmodified Chrome browser interacting with Apache server

• Verified using BoringSSL command line client 21

SUMMARY

•Behavioral verification for cryptographic clients
• Multipass symbolic execution handles cryptographic functions

• Parallelization optimizes search of large state spaces

•Detection of previously unknown client misbehavior
• E.g., a Heartbleed exploit with no Heartbleed-specific configuration

•Performance roughly keeps pace with real workload
• Behavioral verification on Gmail TLS sessions

22

