
I	Can’t	Believe	It’s	Not	Causal	!	
Scalable	Causal	Consistency	
with	No	Slowdown	Cascades

Syed	Akbar	Mehdi1,	Cody	Littley1,	Natacha	Crooks1,	
Lorenzo	Alvisi1,4,	Nathan	Bronson2,	Wyatt	Lloyd3

1UT	Austin,	2Facebook,	3USC,	4Cornell	University

Causal	Consistency:	Great	In	Theory

• Lots	of	exciting	research	building	scalable	causal	data-stores,	e.g.,

Causal	Consistency
Eventual	Consistency

Strong	Consistency

Hi
gh
er
	P
er
f.

Stronger	Guarantees

Ø COPS	[SOSP	11]
Ø Bolt-On	[SIGMOD	13]
Ø Chain	Reaction	[EuroSys 13]

Ø Eiger [NSDI	13]
Ø Orbe [SOCC	13]
Ø GentleRain [SOCC	14]

Ø Cure	[ICDCS	16]
Ø TARDiS [SIGMOD	16]

Causal	Consistency:	But	In	Practice	…

The	middle	child	of	consistency	models	

Espresso TAO Manhattan
Reality: Largest	web	apps	use	eventual	consistency,	e.g.,

Key	Hurdle:	Slowdown	Cascades

Enforce

Consistency

Implicit	Assumption	of
Current	Causal	Systems Reality	at	Scale Slowdown	Cascade

Wait

Wait

Datacenter	A Datacenter	B

Replicated	and	sharded storage	for	a	social	network

W1

Datacenter	A Datacenter	B

Writes	causally	ordered	as	𝑊" → 𝑊$ →𝑊%

W1

Buffered

Buffered

Datacenter	A Datacenter	B

Applied	?W2

Applied	?W1

Current	causal	systems	enforce	consistency	as	a	datastore invariant

W2

W3

W1

Buffered

Buffered

Datacenter	A Datacenter	B

Applied	?W2

Applied	?W1

Alice’s	advisor	unnecessarily	waits	for	Justin	Bieber’s	update	despite	not	reading	it

W2

W3

Delayed

Slowdown	Cascade

W1

W1

Buffered

Buffered

Datacenter	A Datacenter	B

Applied	?W2

Applied	?W1

Alice’s	advisor	unnecessarily	waits	for	Justin	Bieber’s	update	despite	not	reading	it

W2

W3

Delayed

Slowdown	Cascade

W1

Slowdown	cascades	affect	all	previous	
causal	systems	because	they	enforce	
consistency	inside	the	data	store

Slowdown	Cascades	in	Eiger (NSDI	‘13)

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500

Bu
ffe

re
d

Re
pl

ica
te

d
W

rit
es

Replicated writes received

Normal Slowdown

Replicated	write	buffers	
grow	arbitrarily	because	
Eiger enforces	consistency	

inside	the	datastore

OCCULT
Observable	Causal	Consistency	Using	Lossy Timestamps

Causal Consistency guarantees that each client observes a
monotonically non-decreasing set of updates (including its own) in

an order that respects potential causality between operations

Observable	Causal	Consistency

Key	Idea:	
Don’t	implement	a	causally	consistent	data	store
Let	clients	observe a	causally	consistent	data	store

How	do	clients	observe a	causally	consistent	datastore ?

Datacenter	A Datacenter	B

Master

Slave

Master

Slave

Slave

Master

Writes	accepted	only	by	master	shards	and	then	replicated	asynchronously	in-order	to	slaves		

Datacenter	A Datacenter	B

Master

Slave

7 7

Master

Slave

Slave

Master

4 4

8 8

Each	shard	keeps	track	of	a	shardstamp which	counts	the	writes	it	has	applied

Datacenter	A Datacenter	B

Master

Slave

7 7

Master

Slave

Slave

Master

4 4

8 8

Causal	Timestamp:	Vector	of	shardstamps which	identifies	a	global	state	across	all	shards

4 3 2

Client	1

Client	2

Client	3

6 2 5

0 0 0

Datacenter	A Datacenter	B

Master

Slave

7

Master

Slave

Slave

Master

4 4

8 8

4 3 2

Client	1

Client	2

Client	3

6 2 5

0 0 0

4 3 2a

Datacenter	A Datacenter	B

Write	Protocol:	Causal	timestamps	stored	with	objects	to	propagate	dependencies

7

8

Master

Slave

7

Master

Slave

Slave

Master

4 4

8 8

3 2

Client	1

Client	2

Client	3

6 2 5

0 0 0

3 2a

Write	Protocol: Server	shardstamp is	incremented	and	merged	into	causal	timestamps

Datacenter	A Datacenter	B

8

8

8

Master

Slave

7

Master

Slave

Slave

Master

4 4

8 8

8 3 2

Client	1

Client	2

Client	3

6 2 5

0 0 0

8 3 2a

Read	Protocol: Always	safe	to	read	from	master

Datacenter	A Datacenter	B

8

Master

Slave

7

Master

Slave

Slave

Master

4 4

8 8

8 3 2

Client	1

Client	2

Client	3

8 3 5

0 0 0

8 3 2a

Read	Protocol: Object’s	causal	timestamp	merged	into	client’s	causal	timestamp

Datacenter	A Datacenter	B

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 4

8 8

8 3 2

Client	1

Client	2

Client	3

0 0 0

8 3 2a

8 5 5b

Datacenter	A Datacenter	B

Read	Protocol: Causal	timestamp	merging	tracks	causal	ordering	for	writes	following	reads

a

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 4

8 8

8 3 2

Client	1

Client	2

Client	3

0 0 0

8 3 2a

8 5 5b 58 5b

Delayed!

Datacenter	A Datacenter	B

8 3 2

Replication: Like	eventual	consistency;	asynchronous,	unordered,	writes	applied	immediately

a

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 5

8 8

8 3 2

Client	1

Client	2

Client	3

0 0 0

8 3 2a

8 5 5b

Delayed!

Replication: Slaves	increment	their	shardstamps using	causal	timestamp	of	a	replicated	write

Datacenter	A Datacenter	B

8 3 2

58 5b

8 3 2a

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 5

8 8

8 3 2

Client	1

Client	2

Client	3

0 0 0

8 3 2a

8 5 5b

5 0≥ ?
Delayed!

Read	Protocol: Clients	do	consistency	check	when	reading	from	slaves

Datacenter	A Datacenter	B

58 5b

8 3 2a

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 5

8 8

8 3 2

Client	1

Client	2

Client	3

0 0 0

8 3 2a

8 5 5b 8 5 5b

5 0≥ ?

8b

Delayed!

Read	Protocol: Clients	do	consistency	check	when	reading	from	slaves

Datacenter	A Datacenter	B

b’s	dependencies	are	delayed,
but	we	can	read	it	anyway!

8 3 2a

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 5

8 8

8 3 2

Client	1

Client	2

Client	3

8 5 5

8 3 2a

8 5 5b

≥ ?7 8

Stale	Shard	!

Delayed!

Read	Protocol: Clients	do	consistency	check	when	reading	from	slaves

Datacenter	A Datacenter	B

58 5b

8 3 2a

8 5 5

8

Master

Slave

7

Master

Slave

Slave

Master

5 5

8 8

8 3 2

Client	1

Client	2

Client	3

8 5 5

8 3 2a

8 5 5b

≥ ?7 8

Stale	Shard	!

Delayed!

Options:
1. Retry	locally
2. Read	from	master

Read	Protocol: Resolving	stale	reads

Datacenter	A Datacenter	B

58 5b

Causal	Timestamp	Compression
• What	happens	at	scale	when	number	of	shards	is	(say)	100,000	?

400 234 23 87 9 102 78

Size(Causal	Timestamp)	==	100,000	?

Causal	Timestamp	Compression:	Strawman
• To	compress	down	to	n,	conflate	shardstamps with	same	ids	modulo	n

1000 89 13 209

1000 209

Compress

• Problem:	False	Dependencies	
• Solution:
• Use	system	clock	as	the	next	value	of	shardstamp on	a	write
• Decouples	shardstamp value	from	number	of	writes	on	each	shard

Causal	Timestamp	Compression:	Strawman
• To	compress	down	to	n,	conflate	shardstamps with	same	ids	modulo	n

1000 89 13 209

1000 209

Compress

• Problem:	Modulo	arithmetic	still	conflates	unrelated	shardstamps

Causal	Timestamp	Compression
• Insight:	Recent	shardstamps more	likely	to	create	false	dependencies
• Use	high	resolution	for	recent	shardstamps and	conflate	the	rest	

4000 3989 3880 3873 3723 3678

45 89 34 402 123 *

Shardstamps

Shard	IDs

Catch-all
shardstamp

• 0.01	%	false	dependencies	with	just	4	shardstamps and	16K	logical	shards

Transactions	in	OCCULT
Scalable	causally	consistent	general	purpose	transactions

A. Atomicity
B. Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

Properties	of	Transactions

A. Observable Atomicity
B. Observably Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

Properties	of	Transactions

A. Observable Atomicity
B. Observably Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

1. No	centralized	timestamp	authority	(e.g.	per-datacenter)
§ Transactions	ordered	using	causal	timestamps

2. Transaction	commit	latency	is	independent	of	number	of	replicas

Properties	of	Transactions

Properties	of	Protocol

A. Observable Atomicity
B. Observably Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

1. Read	Phase
§ Buffer	writes	at	client

2. Validation	Phase
§ Client	validates	A,	B	and	C	using	causal	timestamps

3. Commit	Phase
§ Buffered	writes	committed	in	an	observably	atomic	way	

Properties	of	Transactions

Three	Phase	Protocol

c	=	[Cal]

a	=	[]

Master

Master

0

b	=	[Bob]

a	=	[]

0

b	=	[Bob]

c	=	[Cal]

Master

Slave

Slave

Slave

1 1

1 1

Alice	and	her	advisor	are	managing	lists	of	students	for	three	courses

0 0 0 0 0 0

Datacenter	A Datacenter	B

0 1 0 0 1 0

0 0 1 0 0 1

c	=	[Cal]

a	=	[]

Master

Master

0

b	=	[Bob]

a	=	[]

0

b	=	[Bob]

c	=	[Cal]

Master

Slave

Slave

Slave

1 1

1 1

Observable	atomicity	and	causally	consistent	snapshot	reads	enforced	by	single	mechanism

0 0 0 0 0 0

Datacenter	A Datacenter	B

0 1 0 0 1 0

0 0 1 0 0 1

c	=	[Cal]

a	=	[]

Master

Master

0

b	=	[Bob]

a	=	[]

0

b	=	[Bob]

c	=	[Cal]

Master

Slave

Slave

Slave

1 1

1 1

0 0 0 0 0 0

Datacenter	A Datacenter	B

0 1 0 0 1 0

0 0 1 0 0 1

Start	T1
r(a)	=	[]

w(a	=	[Abe])

Transaction	T1	:	Alice	adding	Abe	to	course	a

c	=	[Cal]

a	=	[Abe]

Master

Master

1

b	=	[Bob]

a	=	[]

0

b	=	[Bob]

c	=	[Cal]

Master

Slave

Slave

Slave

1 1

1 1

1 0 0 0 0 0

Datacenter	A Datacenter	B

0 1 0 0 1 0

0 0 1 0 0 1

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

1 0 0

Transaction	T1	:	After	Commit

c	=	[Cal]

a	=	[Abe]

Master

Master

1

b	=	[Bob]

a	=	[]

0

b	=	[Bob]

c	=	[Cal]

Master

Slave

Slave

Slave

1 1

1 1

Transaction	T2	:	Alice	moving	Bob	from	course	b to	course	c

1 0 0 0

Datacenter	A Datacenter	B

0 1 0 0 1 0

0 0 1 0 0 1

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]

1 0 011

c	=	[Cal]

a	=	[Abe]

Master

Master

1

b	=	[Bob]

a	=	[]

0

b	=	[Bob]

c	=	[Cal]

Master

Slave

Slave

Slave

1 1

1 1

Observable	Atomicity:	Make	writes	causally	dependent	on	each	other

1 1 1 0 0 0

Datacenter	A Datacenter	B

0 1 0 0 1 0

0 0 1 0 0 1

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]

1 0 0

2

2

Atomicity	through	causality:
Make	writes	dependent	on	each	other

c	=	[Bob,	Cal]

a	=	[Abe]

Master

Master

1

b	=	[]

a	=	[]

0

b	=	[Bob]

c	=	[Cal]

Master

Slave

Slave

Slave

2 1

2 1

Observable	Atomicity:	Same	commit	timestamp	makes	writes	causally	dependent	on	each	other

1 2 2 0 0 0

Datacenter	A Datacenter	B

1 2 2 0 1 0

1 2 2 0 0 1

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]
w(b	=	[])

w(c	=	[Bob,	Cal])
Commit	T2

1 0 0

c	=	[Bob,	Cal]

a	=	[Abe]

Master

Master

1

b	=	[]

a	=	[]

0

b	=	[Bob]

c	=	[Bob,	Cal]

Master

Slave

Slave

Slave

2 1

2 2

Transaction	writes	replicate	asynchronously

1 2 2 0 0 0

Datacenter	A Datacenter	B

1 2 2 0 1 0

1 2 2 1 2 2

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]
w(b	=	[])

w(c	=	[Bob,	Cal])
Commit	T2

1 0 0 Delayed!

Delayed!

c	=	[Bob,	Cal]

a	=	[Abe]

Master

Master

1

b	=	[]

a	=	[]

0

b	=	[Bob]

c	=	[Bob,	Cal]

Master

Slave

Slave

Slave

2 1

2 2

1 2 2 0 0 0

Datacenter	A Datacenter	B

1 2 2 0 1 0

1 2 2 1 2 2

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]
w(b	=	[])

w(c	=	[Bob,	Cal])
Commit	T2

1 0 0 Delayed!

Delayed!

Alice’s	advisor	reads	the	lists	in	a	transaction

Start	T3

c	=	[Bob,	Cal]

2

c	=	[Bob,	Cal]

a	=	[Abe]

Master

Master

1

b	=	[]

a	=	[]

0

b	=	[Bob]

Master

Slave

Slave

Slave

2 1

2

1 2 2 0 1 0

Datacenter	A Datacenter	B

1 2 2 0 1 0

1 2 2 1 2 2

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]
w(b	=	[])

w(c	=	[Bob,	Cal])
Commit	T2

1 0 0

Start	T3
r(b)	=	[Bob]

Delayed!

Delayed!

T3 Read	Set

Transactions	maintain	a	Read	Set	to	validate	atomicity	and	read	from	causal	snapshot

b	=	[Bob]
1 0 1 0

1

2

c	=	[Bob,	Cal]

2

c	=	[Bob,	Cal]

a	=	[Abe]

Master

Master

1

b	=	[]

a	=	[]

0

b	=	[Bob]

Master

Slave

Slave

Slave

2 1

2

1 2 2 1 2 2

Datacenter	A Datacenter	B

1 2 2 0 1 0

1 2 2 1 2 2

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]
w(b	=	[])

w(c	=	[Bob,	Cal])
Commit	T2

1 0 0

Start	T3
r(b)	=	[Bob]

r(c)	=	[Bob,Cal]

Delayed!

Delayed!

T3 Read	Set
b	=	[Bob]

0 1 0

c =	[Bob,	Cal]
1 22

Transactions	maintain	a	Read	Set	to	validate	atomicity	and	read	from	causal	snapshot

c	=	[Bob,	Cal]

2

c	=	[Bob,	Cal]

a	=	[Abe]

Master

Master

1

b	=	[]

a	=	[]

0

b	=	[Bob]

Master

Slave

Slave

Slave

2 1

2

1 2 2 1 2 2

Datacenter	A Datacenter	B

1 2 2 0 1 0

1 2 2 1 2 2

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]
w(b	=	[])

w(c	=	[Bob,	Cal])
Commit	T2

1 0 0

Start	T3
r(b)	=	[Bob]

r(c)	=	[Bob,Cal]

Delayed!

Delayed!

T3 Read	Set

Validation	failure:	c knows	more	writes	from	grey	shard	than	applied	at	the	time	b was	read	

b	=	[Bob]
0 1 0

c =	[Bob,	Cal]
1 22 2

1

c	=	[Bob,	Cal]

2

c	=	[Bob,	Cal]

a	=	[Abe]

Master

Master

1

b	=	[]

a	=	[]

0

b	=	[Bob]

Master

Slave

Slave

Slave

2 1

2

1 2 2 1 2 2

Datacenter	A Datacenter	B

1 2 2 0 1 0

1 2 2 1 2 2

Start	T1
r(a)	=	[]

w(a	=	[Abe])
Commit	T1

Start	T2
r(b)	=	[Bob]
r(c)	=	[Cal]
w(b	=	[])

w(c	=	[Bob,	Cal])
Commit	T2

1 0 0

Start	T3
r(b)	=	[Bob]

r(c)	=	[Bob,Cal]
r(a)	=	[]

Delayed!

Delayed!

T3 Read	Set

Ordering	Violation:	Detected	in	the	usual	way.	Red	Shard	is	stale	!

b	=	[Bob]
1 0 1 0

c =	[Bob,	Cal]
1 2 22

A. Observable Atomicity
B. Observably Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

1. Read	Phase
§ Buffer	writes	at	client

2. Validation	Phase
§ Client	validates	A,	B	and	C	using	causal	timestamps

3. Commit	Phase
§ Buffered	writes	committed	in	an	observably	atomic	way	

Properties	of	Transactions

Three	Phase	Protocol
2.	Validation	Phase

a. Validate	Read	Set	to	verify	A	and	B
b. Validate	Overwrite	Set	to	verify	C

Evaluation

Evaluation	Setup

• Occult	implemented	by	modifying	Redis Cluster	(baseline)
• Evaluated	on	CloudLab
• Two	datacenters	in	WI	and	SC
• 20	server	machines	(4	server	processes	per	machine)
• 16K	logical	shards	

• YCSB	used	as	the	benchmark
• For	graphs	shown	here	read-heavy	(95%	reads)	workload	with	zipfian
distribution

• We	show	cost	of	providing	consistency	guarantees

Goodput Comparison

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

2 4 6 8 10 12 14 16 18 20

Go
od

pu
t	(
m
ill
io
n	
op

s/
s)

Num	Ops	per	Transaction	(Tsize)

Occult	Transactions
Occult	Single-Key
Redis	Cluster

4	shardstamps per	causal	timestamp	

8.7%

31%
39.6%

Effect	of	slow	nodes	on	Occult	Latency

0

1

2

3

4

5

50th 75th 90th 95th 99th

Lo
g 10

(L
at

en
cy

 u
s)

Percentiles

0 2 4 6 slow nodes

28
0u

s

39
0u

s

1.
6m

s

3.
7m

s47.1ms

80
0u

s

Conclusions
• Enforcing	causal	consistency	in	the	data	store	is	vulnerable	to	slowdown	
cascades

• Sufficient	to	ensure	that	clients	observe causal	consistency:
• Use	lossy timestamps	to	provide	the	guarantee
• Avoid	slowdown	cascades

• Observable	enforcement	can	be	extended	to	causally	consistent	transactions
• Make	writes	causally	dependent	on	each	other	to	observe	atomicity
• Also	avoids	slowdown	cascades

