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Causal	Consistency:	Great	In	Theory

• Lots	of	exciting	research	building	scalable	causal	data-stores,	e.g.,
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Stronger	Guarantees

Ø COPS	[SOSP	11]
Ø Bolt-On	[SIGMOD	13]
Ø Chain	Reaction	[EuroSys 13]

Ø Eiger [NSDI	13]
Ø Orbe [SOCC	13]
Ø GentleRain [SOCC	14]

Ø Cure	[ICDCS	16]
Ø TARDiS [SIGMOD	16]



Causal	Consistency:	But	In	Practice	…

The	middle	child	of	consistency	models	

Espresso TAO Manhattan
Reality: Largest	web	apps	use	eventual	consistency,	e.g.,



Key	Hurdle:	Slowdown	Cascades
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Datacenter	A Datacenter	B

Replicated	and	sharded storage	for	a	social	network
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Datacenter	A Datacenter	B

Writes	causally	ordered	as	𝑊" → 𝑊$ →𝑊%
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Current	causal	systems	enforce	consistency	as	a	datastore invariant
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Alice’s	advisor	unnecessarily	waits	for	Justin	Bieber’s	update	despite	not	reading	it
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Slowdown	cascades	affect	all	previous	
causal	systems	because	they	enforce	
consistency	inside	the	data	store



Slowdown	Cascades	in	Eiger (NSDI	‘13)
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OCCULT
Observable	Causal	Consistency	Using	Lossy Timestamps



Causal Consistency guarantees that each client observes a 
monotonically non-decreasing set of  updates (including its own) in 

an order that respects potential causality between operations  

Observable	Causal	Consistency

Key	Idea:	
Don’t	implement	a	causally	consistent	data	store
Let	clients	observe a	causally	consistent	data	store



How	do	clients	observe a	causally	consistent	datastore ?

Datacenter	A Datacenter	B
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Writes	accepted	only	by	master	shards	and	then	replicated	asynchronously	in-order	to	slaves		
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Each	shard	keeps	track	of	a	shardstamp which	counts	the	writes	it	has	applied
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Causal	Timestamp:	Vector	of	shardstamps which	identifies	a	global	state	across	all	shards
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Write	Protocol:	Causal	timestamps	stored	with	objects	to	propagate	dependencies
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Write	Protocol: Server	shardstamp is	incremented	and	merged	into	causal	timestamps
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Read	Protocol: Always	safe	to	read	from	master
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Read	Protocol: Object’s	causal	timestamp	merged	into	client’s	causal	timestamp
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Read	Protocol: Causal	timestamp	merging	tracks	causal	ordering	for	writes	following	reads
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Replication: Like	eventual	consistency;	asynchronous,	unordered,	writes	applied	immediately
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Replication: Slaves	increment	their	shardstamps using	causal	timestamp	of	a	replicated	write
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Read	Protocol: Clients	do	consistency	check	when	reading	from	slaves
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Read	Protocol: Clients	do	consistency	check	when	reading	from	slaves
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b’s	dependencies	are	delayed,
but	we	can	read	it	anyway!
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Read	Protocol: Clients	do	consistency	check	when	reading	from	slaves
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Options:
1. Retry	locally
2. Read	from	master

Read	Protocol: Resolving	stale	reads
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Causal	Timestamp	Compression
• What	happens	at	scale	when	number	of	shards	is	(say)	100,000	?

400 234 23 87 9 102 78

Size(Causal	Timestamp)	==	100,000	?



Causal	Timestamp	Compression:	Strawman
• To	compress	down	to	n,	conflate	shardstamps with	same	ids	modulo	n

1000 89 13 209

1000 209

Compress

• Problem:	False	Dependencies	
• Solution:
• Use	system	clock	as	the	next	value	of	shardstamp on	a	write
• Decouples	shardstamp value	from	number	of	writes	on	each	shard



Causal	Timestamp	Compression:	Strawman
• To	compress	down	to	n,	conflate	shardstamps with	same	ids	modulo	n

1000 89 13 209

1000 209

Compress

• Problem:	Modulo	arithmetic	still	conflates	unrelated	shardstamps



Causal	Timestamp	Compression
• Insight:	Recent	shardstamps more	likely	to	create	false	dependencies
• Use	high	resolution	for	recent	shardstamps and	conflate	the	rest	

4000 3989 3880 3873 3723 3678

45 89 34 402 123 *

Shardstamps

Shard	IDs

Catch-all
shardstamp

• 0.01	%	false	dependencies	with	just	4	shardstamps and	16K	logical	shards



Transactions	in	OCCULT
Scalable	causally	consistent	general	purpose	transactions



A. Atomicity
B. Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

Properties	of	Transactions



A. Observable Atomicity
B. Observably Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

Properties	of	Transactions



A. Observable Atomicity
B. Observably Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

1. No	centralized	timestamp	authority	(e.g.	per-datacenter)
§ Transactions	ordered	using	causal	timestamps

2. Transaction	commit	latency	is	independent	of	number	of	replicas

Properties	of	Transactions

Properties	of	Protocol



A. Observable Atomicity
B. Observably Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

1. Read	Phase
§ Buffer	writes	at	client

2. Validation	Phase
§ Client	validates	A,	B	and	C	using	causal	timestamps

3. Commit	Phase
§ Buffered	writes	committed	in	an	observably	atomic	way	

Properties	of	Transactions

Three	Phase	Protocol
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Observable	Atomicity:	Make	writes	causally	dependent	on	each	other
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Alice’s	advisor	reads	the	lists	in	a	transaction
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Transactions	maintain	a	Read	Set	to	validate	atomicity	and	read	from	causal	snapshot
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Transactions	maintain	a	Read	Set	to	validate	atomicity	and	read	from	causal	snapshot
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A. Observable Atomicity
B. Observably Read	from	a	causally	consistent	snapshot
C. No	concurrent	conflicting	writes

1. Read	Phase
§ Buffer	writes	at	client

2. Validation	Phase
§ Client	validates	A,	B	and	C	using	causal	timestamps

3. Commit	Phase
§ Buffered	writes	committed	in	an	observably	atomic	way	

Properties	of	Transactions

Three	Phase	Protocol
2.	Validation	Phase

a. Validate	Read	Set	to	verify	A	and	B
b. Validate	Overwrite	Set	to	verify	C



Evaluation



Evaluation	Setup

• Occult	implemented	by	modifying	Redis Cluster	(baseline)
• Evaluated	on	CloudLab
• Two	datacenters	in	WI	and	SC
• 20	server	machines	(4	server	processes	per	machine)
• 16K	logical	shards	

• YCSB	used	as	the	benchmark
• For	graphs	shown	here	read-heavy	(95%	reads)	workload	with	zipfian
distribution

• We	show	cost	of	providing	consistency	guarantees



Goodput Comparison
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Effect	of	slow	nodes	on	Occult	Latency
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Conclusions
• Enforcing	causal	consistency	in	the	data	store	is	vulnerable	to	slowdown	
cascades

• Sufficient	to	ensure	that	clients	observe causal	consistency:
• Use	lossy timestamps	to	provide	the	guarantee
• Avoid	slowdown	cascades

• Observable	enforcement	can	be	extended	to	causally	consistent	transactions
• Make	writes	causally	dependent	on	each	other	to	observe	atomicity
• Also	avoids	slowdown	cascades


