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Our contribution

* First analysis of cache allocation policies

with well defined resource-sharing properties.

* Impossibility result:

no policy achieves all good properties!

* A new policy that is near-optimal and
outperforms other policies when users cheat.
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A simple model

* Users access equal-sized files at constant rates
— 7;.]. the rate userjaccesses file j

* A allocation policy decides which files to cache
— P, the % of file j put in cache

* Users care their hit ratio HR, = total _hits _ _ s

L . total accesses 7.
— user i's hit ratio: — a ij

€ Results hold with varied file sizes, access partial files, pj is binary, etc.
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* |solation Guarantee
— No user should be worse off than static allocation

 Strategy-Proofness
— No user can improve by cheating

* Pareto Efficiency
— Can’t improve a user without hurting others
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What is max-min fairness?

* Maximize the the user with minimum allocation
— Solution: allocate each 1/n (fair share)

33% 33% 33%
— Handles if some users want less than fair share

20% 40% 40%

* Widely successful to other resources:
— OS: round robin, prop sharing, lottery sched...
— Networking: fair queueing, wfq, wf2q, csfq, drr...
— Datacenter: DRF, Hadoop fair sched, Quincy...
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Theorem

No allocation policy can satisfy all
three properties!

* Best we can do: two of three.
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What makes cache sharing

different?
Unlike CPU or network links:

* The cost of “switching” is high
— Cache misses go to slow storage
— Prevents efficient time multiplexing

* Can be shared in space
— Shared data can be accessed non-exclusively
— A CPU cycle used by only one thread
— A network link sends one packet at a time
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* How do we solve it? (FairRide)
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FairRide

 Starts with max-min fairness
— Allocate 1/n to each user
— Split “cost” of shared files equally among shared users

* Only difference:

blocking users who don’t “pay” from accessing

* Probabilistic blocking: with some probability
— Implemented with delaying
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FairRide: Blocking
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Probabilistic blocking

* FairRide blocks a user with p(nj) = 2/(nj+1) probability
— njis number of other users caching file j
—e.g., p(1)=50%, p(4)=20%

* The best you can doin a general case
— Less blocking does not prevent cheating



Properties

Isolation Strategy Pareto
Guarantee Proofness Ef'flClency

max-min fairness

static allocation v v X

priority allocation X V4 v
max-min rate X 4 X
FairRide 4 4 Near-optimal

122



Strategy- , Pareto-
proofness efficiency



Strategy- , Pareto-
proofness efficiency

* More efficient when user cheats
— Minimal impact on efficiency when no user cheats



Strategy- , Pareto-
proofness efficiency

* More efficient when user cheats
— Minimal impact on efficiency when no user cheats

* Cost of cheating vs. cost of blocking/delaying



Strategy- , Pareto-
proofness efficiency

* More efficient when user cheats
— Minimal impact on efficiency when no user cheats

* Cost of cheating vs. cost of blocking/delaying
— The latter is small insurance for the former



Strategy- , Pareto-
proofness efficiency

* More efficient when user cheats
— Minimal impact on efficiency when no user cheats

* Cost of cheating vs. cost of blocking/delaying
— The latter is small insurance for the former

* Strategy-proofness makes the system stable
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* How well does FairRide work in practice?



Evaluation

Implemented in Alluxio (formerly Tachyon)

FairRide: delay a request as if blocked
Compared with max-min fairness.

Benchmarked with TPC-H, YCSB, Facebook
workloads.



Evaluation

* Does FairRide prevent cheating?
* What is the cost of FairRide?

* How does it perform end-to-end?
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Cheating can greatly hurt user performance.
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Cheating under FairRide
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FairRide dis-incentives users from cheating.

32



Many users

N
@)
@)

I~
@)

N
o

Avg. response (ms)
°©

@)

@)

--strategic users |

other users

0 1 5 10 15 20
No. of strategic users (out of 20)

33



Many users

N
@)
@)

I~
@)

N
o

Avg. response (ms)
°

@)

@)

NN NI I D IS S S S S S S S S - - EEE NN . - -
——————— — -y

-o-strateg lcusers |

other users

0 1 5 10 15 20
No. of strategic users (out of 20)

33



Many users

N
@)
@)

I~
@)

N
o

Avg. response (ms)
°

@)

@)

NN NI I D IS S S S S S S S S - - EEE NN . - -
——————— — -y

-o-strateg lcusers |

other users

0 1 5 10 15 20
No. of strategic users (out of 20)

33



Many users

N
@)
@)

I~
@)

N
o

Avg. response (ms)
°

@)

@)

NN NI I D IS S S S S S S S S - - EEE NN . - -
——————— — -y

-o-strateg lcusers |

other users

0 1 5 10 15 20
No. of strategic users (out of 20)

FairRide has minimal loss.
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Facebook experiments
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Facebook experiments

60
B max-min

G M FairRide
S ’\'545
S 2
c O
= &30
S ic
S O
3 S
o 15
Q
o

1-10 11-50 51-100 101-500 501-
Bin (#Tasks)

FairRide outperforms max-min fairness by 29%
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Conclusion

* No policy can satisfy all desirable properties:
— Isolation guarantee
— Strategy proofness
— Pareto efficiency

35



Conclusion

* No policy can satisfy all desirable properties:
— Isolation guarantee
— Strategy proofness
— Pareto efficiency

* FairRide:isolation guarantee and strategy-
proofness through probabilistic blocking.

— Outperforms static allocation and other sharing
policies when users cheat.

— Achieves this with least overhead
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