lab

FairRide: Near-Optimal
Fair Cache Sharing

Qifan Pu,
Haoyuan Li,
Matei Zaharia,
Ali Ghodsi,

lon Stoica -

Caches are crucial

Caches are crucial

Caches are crucial

— D)
() iF
B il emCached

Caches are crucial

A\ ALLUXIO
Spoﬁg
I‘[— /*“T

- A

; iﬁl emCached

Cache sharing

Cache sharing

* Increasingly, caches are shared among multiple users

Cache sharing

* Increasingly, caches are shared among multiple users
— Especially with the advent of cloud

Cache sharing

* Increasingly, caches are shared among multiple users
— Especially with the advent of cloud

Backend (storage/network)

Cache sharing

* Increasingly, caches are shared among multiple users

X

Backend (storage/network)

— Especially with the advent of cloud

Cache sharing

* Increasingly, caches are shared among multiple users
— Especially with the advent of cloud

Benefits: M />< |

— Provide low latency

— Reduce backend load

Backend (storage/network)

Cache sharing

* Increasingly, caches are shared among multiple users
— Especially with the advent of cloud

Benefits: M />< |

— Provide low latency (Cache A
— Reduce backend load %
- <
BB -D0 D0 -
Backend (storage/network)

-

Problems with cache algorithms

(Cache)
N

>

kBackend (storage/network)

/
\

Problems with cache algorithms

e LRU, LFU, LRU-K...

(Cache)
N

>

kBackend (storage/network)

/
\

Problems with cache algorithms

e LRU, LFU, LRU-K...

(Cache)
N

S 4
kBackend (storage/network)

/
\

Problems with cache algorithms

b A

(Cache)
N

S 4
KBackend (storage/network)

e LRU, LFU, LRU-K...

/
\

Problems with cache algorithms

b A

(Cache)
N

S 4
kBackend (storage/network)

e LRU, LFU, LRU-K...

/
\

Problems with cache algorithms

e LRU, LFU, LRU-K...

* (Cache data likely to be
l\ /\ /\ accessed in the future

(Cache)
N

S 4
kBackend (storage/network)

/
\

Problems with cache algorithms

e LRU, LFU, LRU-K...

* (Cache data likely to be
accessed in the future
* Optimize global efficiency

(Cache)
N

S 4
kBackend (storage/network)

/
\

Problems with cache algorithms

b A

\

(Cache)

E Rt

>

-

/
\

>

Backend (storage/network)

* LRU, LFU, LRU-K...
Cache data likely to be
accessed in the future

* Optimize global efficiency

* Single user gets arbitrarily
small cache

Problems with cache algorithms

M/

(Cache h
——

Backend (storage/network)

-

* LRU, LFU, LRU-K...
Cache data likely to be
accessed in the future

* Optimize global efficiency

* Single user gets arbitrarily
small cache

Problems with cache algorithms

M/

(Cache h
——

Backend (storage/network)

-

* LRU, LFU, LRU-K...
Cache data likely to be
accessed in the future

* Optimize global efficiency

* Single user gets arbitrarily
small cache

Problems with cache algorithms

LRU, LFU, LRU-K...

* (Cache data likely to be
accessed in the future
* Optimize global efficiency

(Cache)

m * Single user gets arbitrarily

< small cache

\

>

Backend (storage/network) | 4

N ') * Prone to strategic behavior

Problems with cache algorithms

* LRU, LFU, LRU-K...

* (Cache data likely to be
s /\ accessed in the future
‘ i :ié‘ir\x * Optimize global efficiency

(Cache)

m * Single user gets arbitrarily

> f‘) < small cache

>

| Backend (storage/network) | o« - Prone to strategic behavior

Problems with cache algorithms

* LRU, LFU, LRU-K...

* (Cache data likely to be
s /\ accessed in the future
l i ;ﬂg‘i\\ * Optimize global efficiency

(Cache)

- * Single user gets arbitrarily

> f‘) < small cache

>

| Backend (storage/network) | o« - Prone to strategic behavior

Solution?

Statically allocated
4 Cache Cache

o

Backend (storage/network)

Solution?

Statically allocated

]\/\/\

Backend (storage/network)

Isolation
Strategy-proof

What we want

Statically allocated
4 Cache Cache

2~

Backend (storage/network)

Isolation
Strategy-proof

Globally shared

-

>

Backend (storage/network)

What we want

Statically allocated
4 Cache Cache

Backend (storage/network)

Isolation
Strategy-proof

Globally shared

-

>

Backend (storage/network)

Higher utilization
Share data 6

What we want

Statically allocated

-

A

g

BR-DD-D D

Backend (storage/network)

~

Globally shared

Isolation
Strategy-proof

-

>

<

Backend (storage/network)

Higher utilization
Share data 6

Our contribution

Our contribution

* First analysis of cache allocation policies
with well defined resource-sharing properties.

Our contribution

* First analysis of cache allocation policies
with well defined resource-sharing properties.

* Impossibility result:
no policy achieves all good properties!

Our contribution

* First analysis of cache allocation policies

with well defined resource-sharing properties.

* Impossibility result:

no policy achieves all good properties!

* A new policy that is near-optimal and
outperforms other policies when users cheat.

A simple model

A simple model

* Users access equal-sized files at constant rates
— 7;.]. the rate userjaccesses file j

A simple model

* Users access equal-sized files at constant rates
— 7;.]. the rate userjaccesses file j

* A allocation policy decides which files to cache
— P, the % of file j putin cache

A simple model

* Users access equal-sized files at constant rates
— 7;.]. the rate userjaccesses file j

* A allocation policy decides which files to cache
— P, the % of file j put in cache

e Users care their hit ratio
— user/'s hit ratio:

A simple model

* Users access equal-sized files at constant rates
— 7;.]. the rate userjaccesses file j

* A allocation policy decides which files to cache
— P, the % of file j put in cache

* Users care their hit ratio HR, = total _hits _ _ 5

Lo . total accesses 7.
— user /'s hit ratio: - a ij

A simple model

* Users access equal-sized files at constant rates
— 7;.]. the rate userjaccesses file j

* A allocation policy decides which files to cache
— P, the % of file j put in cache

* Users care their hit ratio HR, = total _hits _ _ s

L . total accesses 7.
— user i's hit ratio: — a ij

€ Results hold with varied file sizes, access partial files, pj is binary, etc.

Outline

* What properties do we want?

Properties

* |solation Guarantee
— No user should be worse off than static allocation

10

Properties

* |solation Guarantee
— No user should be worse off than static allocation

 Strategy-Proofness
— No user can improve by cheating

10

Properties

* |solation Guarantee
— No user should be worse off than static allocation

 Strategy-Proofness
— No user can improve by cheating

* Pareto Efficiency
— Can’timprove a user without hurting others

10

Strategy proofness

Strategy proofness

* Very easy to cheat, hard to detect
—e.g., by making spurious accesses

Strategy proofness

* Very easy to cheat, hard to detect
—e.g., by making spurious accesses
* Can happen in practice

Strategy proofness

* Very easy to cheat, hard to detect
—e.g., by making spurious accesses
* Can happen in practice

Sitel Site?2

e
MySQL Instance

Strategy proofness

* Very easy to cheat, hard to detect
—e.g., by making spurious accesses
* Can happen in practice

Sitel Site?2

/Amazon Elasticache)

| |
| |
[il

L MySQL Instance

%
\

J

Strategy proofness

* Very easy to cheat, hard to detect

—e.g., by making spurious accesses

* Can happen in practice

Sitel Site2 18
g/ 12

(Amazon Elasticache) O
l | = 6

! _ I —
-) 9 o

) E

L MySQL Instance P

sitel
site2

10

20 30
time (min)

4,0

Strategy proofness

* Very easy to cheat, hard to detect

—e.g., by making spurious accesses

* Can happen in practice

Sitel Site?2

NN

” Amazon Elasticache
| |
| |
L i

/

\

L MySQL Instance P

miss ratio (%)

18

|
N

(@)

@)

site1
site2
I I I I
0 10 20 30 40
time (min)

Strategy proofness

* Very easy to cheat, hard to detect

—e.g., by making spurious accesses

* Can happen in practice

Sitel Site?2

NN

” Amazon Elasticache
| |
| |
L i

/

\

L MySQL Instance P

miss ratio (%)

18

|
N

(@)

@)

site1
site2
I I I I
0 10 20 30 40
time (min)

Strategy proofness

* Very easy to cheat, hard to detect

—e.g., by making spurious accesses

* Can happen in practice

Sitel Site?2

Y IR
/
<

/Amazon Elasticache)
| |
| |
L |

%
\

L MySQL Instance P

miss ratio (%)

18

|
N

(@)

@)

site1
site2
I I I I
0 10 20 30 40
time (min)

Strategy proofness

* Very easy to cheat, hard to detect

—e.g., by making spurious accesses

* Can happen in practice

Sitel Site?2

/
/

N
<

” Amazon Elasticache
|
| |
L_ .
/
\
L MySQL Instance P

miss ratio (%)

18

|
N

(@)

@)

sitel
site2

0 10 20 30
time (min)

Strategy proofness

* Very easy to cheat, hard to detect

—e.g., by making spurious accesses

* Can happen in practice

Sitel Site?2

/
/

N
<

” Amazon Elasticache
|
| |
L_ .
/
\
L MySQL Instance P

miss ratio (%)

18

|
N

(@)

@)

sitel
site2

0 10 20 30
time (min)

Strategy proofness

* Very easy to cheat, hard to detect

—e.g., by making spurious accesses

* Can happen in practice

Sitel Site?2

/
/

N
<

” Amazon Elasticache
|
| |
L_ .
/
\
L MySQL Instance P

miss ratio (%)

18

|
N

(@)

@)

IZX

sitel

site2
[[[[

0 10 20 30 40
time (min)

Properties

* |solation Guarantee
— No user should be worse off than static allocation

 Strategy-Proofness
— No user can improve by cheating

* Pareto Efficiency
— Can’t improve a user without hurting others

12

Outline

* Can we extend max-min fairness to solve the
problem?

What is max-min fairness?

What is max-min fairness?

* Maximize the the user with minimum allocation
— Solution: allocate each 1/n (fair share)

33% 33% 33%

What is max-min fairness?

* Maximize the the user with minimum allocation
— Solution: allocate each 1/n (fair share)

33% 33% 33%
— Handles if some users want less than fair share

20% 40% 40%

What is max-min fairness?

* Maximize the the user with minimum allocation
— Solution: allocate each 1/n (fair share)

33% 33% 33%
— Handles if some users want less than fair share

20% 40% 40%

* Widely successful to other resources:
— OS: round robin, prop sharing, lottery sched...
— Networking: fair queueing, wfq, wf2q, csfq, drr...
— Datacenter: DRF, Hadoop fair sched, Quincy...

An example

An example

An example

Alice

Bob

An example

5 req/sec

Alice
10,.
e
q S@C
C
|s€
- 40153

req/sec

I PL5

An example

5 reg/sec A
Alice

req/sec

file sizes = 1GB, total cache = 2GB

An example

5 reg/sec A
Alice

req/sec

file sizes = 1GB, total cache = 2GB

An example

5 reg/sec A
Alice

req/sec

file sizes = 1GB, total cache = 2GB

An example

5 reg/sec A
Alice

req/sec

file sizes = 1GB, total cache = 2GB

An example

5 req/sec A D
Alice 50%

req/sec

file sizes = 1GB, total cache = 2GB

An example

5 req/sec A D
Alice 50%

req/sec

file sizes = 1GB, total cache = 2GB

An example

5 req/sec A L
Alice 50%
HR =83.3%

req/sec

file sizes = 1GB, total cache = 2GB

An example

5 req/sec A L
Alice 50%
HR =83.3% =
./ |B &
| Al B © 1100%
O 0.5 1
Bob req/sec g C
HR = 83.3% 50%

file sizes = 1GB, total cache = 2GB

Properties

Isolation Strategy Pareto
Guarantee Proofness Efficiency

max-min fairness

16

Properties

Isolation Strategy Pareto
Guarantee Proofness EfflClency

max-min fairness

16

Properties

Isolation Strategy Pareto
Guarantee Proofness EfflClency

max-min fairness

16

An example

5 req/sec A L
Alice £0%
HR =83.3%

req/sec

file sizes = 1GB, total cache = 2GB

An example

5 req/sec A L
Alice £0%
HR =83.3%

Bob
HR = 83.3%

file sizes = 1GB, total cache = 2GB

An example
r ranlcar m

s it possible for a strategic Bob to

R get higher hit rate from the system?

Al B
eC 1oo‘V
0.5 1 1. 5 2GB (eC\\s
Bob) req/sec
HR = 83.3%

file sizes = 1GB, total cache = 2GB

‘ 7o0c T D
0

An example

5 req/sec A L
Alice £0%
HR =83.3%

Bob
HR = 83.3%

file sizes = 1GB, total cache = 2GB

An example

5 reg/sec
Alice 50%
HR =83.3%
‘ A 100
O 0.5

Bob \ ' req/sec
HR=83.3% } +1oreﬁ sec '

file sizes = 1GB, total cache = 2GB

An example

5 reg/sec
Alice 50%
HR =83.3%
‘ A | 100
O 0.5 .
Bob \ ' req/sec

HR=83.3% } +1oregisec ’ 100%

file sizes = 1GB, total cache = 2GB

An example

5 reg/sec
Alice 50%
HR =83.3%
‘ AlB | 50%
O 0.5 1 .
Bob \ ' req/sec

HR=83.3% } +1oregisec ’ 100%

file sizes = 1GB, total cache = 2GB

An example

5 reg/sec
Alice
HR =83.3%
‘ B | 100%
O 0.5 1 1.5 2GB
-
Bob req/sec

HR=83.3% } +1oregisec ’ 100%

file sizes = 1GB, total cache = 2GB

An example

5 reg/sec
Alice
HR =83.3%
‘ B | 100%
O 0.5 1 1.5 2GB
-
Bob req/sec

HR=83.3% } +1oregisec ’ 100%

file sizes = 1GB, total cache = 2GB

An example

5 reg/sec
Alice
HR =83.3%
‘ B | 100%
O 0.5 1 1.5 2GB
-
Bob req/sec

HR S83% } +10 reﬁ sec ' 100%
100%

file sizes = 1GB, total cache = 2GB

An example

5 req/sec ﬁ

Alice
HR =83.3% 2o, =
Q
q/SeC A B
‘ B C ‘ v |100%
o 0.5 1 1.5 2GB
- a
Bob req/sec

HR S831% } +10 reﬁ sec ' 100%
100% 5

file sizes = 1GB, total cache = 2GB

An example

5 req/sec ﬁ

Alice
HRM 10 —

66.7% *ss B

€c A
NS f
o 0.5 1 1.5 2GB
- a

Bob req/sec

HR S831% } +10 reﬁ sec ' 100%
100% 5

file sizes = 1GB, total cache = 2GB

An example

5 req/sec ﬁ

Alice
HRM

10
r'e
0)
66-7/0 = q/SeC 4 B
,‘\ = — .LD -r\\sec" 100%

By gaming the system, a user can
1r _increase performance by hurting others!

100% / “ 1

file sizes = 1GB, total cache = 2GB .

Properties

Isolation Strategy Pareto
Guarantee Proofness EfflClency

max-min fairness

18

Properties

Isolation Strategy Pareto
Guarantee Proofness EfflClency

max-min fairness

18

Properties

Isolation Strategy Pareto
Guarantee Proofness EfflClency

max-min fairness

static allocation v v X

18

Properties

Isolation Strategy Pareto
Guarantee Proofness EfflClency

max-min fairness

static allocation v v X

priority allocation X V4 v

18

Properties

Isolation Strategy Pareto
Guarantee Proofness EfflClency

max-min fairness

static allocation v v X
priority allocation X V4 v
max-min rate X v X

18

Theorem

No allocation policy can satisfy all
three properties!

Theorem

No allocation policy can satisfy all
three properties!

* Best we can do: two of three.

What makes cache sharing
different?

What makes cache sharing

different?
Unlike CPU or network links:

What makes cache sharing

different?
Unlike CPU or network links:

* The cost of “switching” is high
— Cache misses go to slow storage
— Prevents efficient time multiplexing

What makes cache sharing

different?
Unlike CPU or network links:

* The cost of “switching” is high
— Cache misses go to slow storage
— Prevents efficient time multiplexing

* Can be shared in space
— Shared data can be accessed non-exclusively
— A CPU cycle used by only one thread
— A network link sends one packet at a time

Outline

* How do we solve it? (FairRide)

Properties

Isolation Strategy Pareto
Guarantee Proofness Ef'flClency

max-min fairness

static allocation v v X
priority allocation X V4 v
max-min rate X v X

103

Properties

Isolation Strategy Pareto
Guarantee Proofness Ef'flClency

max-min fairness

static allocation v v X
priority allocation X V4 v
max-min rate X v X

FairRide

104

Properties

Isolation Strategy Pareto
Guarantee Proofness Ef'flClency

max-min fairness

static allocation v v X

priority allocation X V4 v
max-min rate X 4 X
FairRide v v

105

Properties

Isolation Strategy Pareto
Guarantee Proofness Ef'flClency

max-min fairness

static allocation v v X

priority allocation X V4 v
max-min rate X v X
FairRide v v Near-optimal

106

FairRide

FairRide

 Starts with max-min fairness
— Allocate 1/n to each user
— Split “cost” of shared files equally among shared users

FairRide

 Starts with max-min fairness
— Allocate 1/n to each user
— Split “cost” of shared files equally among shared users

* Only difference:

blocking users who don’t “pay” from accessing

FairRide

 Starts with max-min fairness
— Allocate 1/n to each user
— Split “cost” of shared files equally among shared users

* Only difference:

blocking users who don’t “pay” from accessing

* Probabilistic blocking: with some probability

FairRide

 Starts with max-min fairness
— Allocate 1/n to each user
— Split “cost” of shared files equally among shared users

* Only difference:

blocking users who don’t “pay” from accessing

* Probabilistic blocking: with some probability
— Implemented with delaying

FairRide: Blocking

A
Alice
B 1\
‘ B C ‘ 100%
o o5 1 1.5 2GB
1‘0

C
HR 833% +10 reﬁ sec ' 100%
100% }

FairRide: Blocking

A
Alice
B 1\
‘ B C ‘ 100%
o o5 1 1.5 2GB o

C
HR 833% +10 reﬁ sec ' 100%
100% }

FairRide: Blocking

A
Alice
C N
100%

HR =833% +10 req/sec
100% }*

FairRide: Blocking

A
Alice
C N
100%

HR =833% +10 req/sec

FairRide: Blocking

A
Alice
C N
100%

HR 5 833% +10 req/sec

FairRide: Blocking

Alice

AIIow 5
Block 5 m
100%

Cheatlng always gives worst performance.
Dis-incentive strategic behaviors.

HEF =L FLU TEY/SECT 100%
6.7%

Probabilistic blocking

Probabilistic blocking

* FairRide blocks a user with p(nj) = 2/(nj+1) probability
— njis number of other users caching file j
—e.g., p(2)=50%, p(4)=20%

Probabilistic blocking

* FairRide blocks a user with p(nj) = 2/(nj+1) probability
— njis number of other users caching file j
—e.g., p(1)=50%, p(4)=20%

* The best you can doin a general case

Probabilistic blocking

* FairRide blocks a user with p(nj) = 2/(nj+1) probability
— njis number of other users caching file j
—e.g., p(1)=50%, p(4)=20%

* The best you can doin a general case
— Less blocking does not prevent cheating

Properties

Isolation Strategy Pareto
Guarantee Proofness Ef'flClency

max-min fairness

static allocation v v X

priority allocation X V4 v
max-min rate X 4 X
FairRide 4 4 Near-optimal

122

Strategy- , Pareto-
proofness efficiency

Strategy- , Pareto-
proofness efficiency

* More efficient when user cheats
— Minimal impact on efficiency when no user cheats

Strategy- , Pareto-
proofness efficiency

* More efficient when user cheats
— Minimal impact on efficiency when no user cheats

* Cost of cheating vs. cost of blocking/delaying

Strategy- , Pareto-
proofness efficiency

* More efficient when user cheats
— Minimal impact on efficiency when no user cheats

* Cost of cheating vs. cost of blocking/delaying
— The latter is small insurance for the former

Strategy- , Pareto-
proofness efficiency

* More efficient when user cheats
— Minimal impact on efficiency when no user cheats

* Cost of cheating vs. cost of blocking/delaying
— The latter is small insurance for the former

* Strategy-proofness makes the system stable

Outline

* How well does FairRide work in practice?

Evaluation

Implemented in Alluxio (formerly Tachyon)

FairRide: delay a request as if blocked
Compared with max-min fairness.

Benchmarked with TPC-H, YCSB, Facebook
workloads.

Evaluation

* Does FairRide prevent cheating?
* What is the cost of FairRide?

* How does it perform end-to-end?

Cheating under Max-min fairness

~
@)
@)

W
o
@)

R
O
@

—ysSeri
—=yUSer 2

Avg. response (ms)
N
@)
@)

@

0 150 300 450 600 750 Q00O 1050
Time (s)

Cheating under Max-min fairness

~
@)
@)

W
o
@)

e

R
O
@

—ysSeri
—=yUSer 2

Avg. response (ms)
N
@)
@)

@

0 150 300 450 600 750 Q00O 1050
Time (s)

Cheating under Max-min fairness

~
@)
@)

W
o
@)

user 2 cheats

Avg. response (ms)
N
@)
@)

0 150 300 450 600 750 Q00O 1050
Time (s)

Cheating under Max-min fairness

~
@)
@)

W
o
@)

user 2 cheats

Avg. response (ms)
N
@)
@)

0 150 300 450 600 750 Q00O 1050
Time (s)

Cheating under Max-min fairness

~
@)
@)

user 1 cheats

4

user 2 cheats

W
o
@)

Avg. response (ms)
N
@)
@)

0 150 300 450 600 750 Q00O 1050
Time (s)

Cheating under Max-min fairness

~
@)
@)

user 1 cheats

Avg. response (ms)

0 150 300 450 600 750 Q00O 1050
Time (s)

Cheating under Max-min fairness

~
@)
@)

user 1 cheats

W
o
@)

Avg. response (ms)
N
@)
@)

0 150 300 450 600 750 Q00O 1050
Time (s)

Cheating can greatly hurt user performance.

Cheating under FairRide

~
@)
@)

W
o
@)

R
O
@

—lser 1
—|Ser 2

Avg. response (ms)
N
@)
@)

@

O 150 300 450 600 750 900 1050
Time (s)

Cheating under FairRide

~
@)
@)

W
o
@)

R
O
@

—lser 1
—|Ser 2

0 150 300 450 600 750 900 1050
Time (s)

@

Avg. response (ms)
N
3

Cheating under FairRide

~
@)
@)

W
o
@)

WA/

N user 2 cheats

R
O
@

—lser 1
—|Ser 2

Avg. response (ms)
N
@)
@)

@

0 150 300 450 600 750 900 1050
Time (s)

Cheating under FairRide

~

)

Avg. response (ms)
N

@)
@)

o
@)

@
@

R
O
@

@

N user 2 cheats

O 150 300 450 600 /50 900 1050

Time (s)

Cheating under FairRide

~

)

Avg. response (ms)
N

@)
@)

o
@)

@
@

R
O
@

@

user 1 cheats

N user 2 cheats

—lser 1
—l|Ser 2

O 150 300 450 600 /50 900 1050

Time (s)

Cheating under FairRide

Avg. response (ms)

400

300

200 user 1 cheats

100 N user 2 cheats —ser 1|
5 —user 2

0 150 300 450 600 750 900 1050

Time (s)

FairRide dis-incentives users from cheating.

32

Many users

N
@)
@)

I~
@)

N
o

Avg. response (ms)
°©

@)

@)

--strategic users |

other users

0 1 5 10 15 20
No. of strategic users (out of 20)

33

Many users

N
@)
@)

I~
@)

N
o

Avg. response (ms)
°

@)

@)

NN NI I D IS S S S S S S S S - - EEE NN . - -
——————— — -y

-o-strateg lcusers |

other users

0 1 5 10 15 20
No. of strategic users (out of 20)

33

Many users

N
@)
@)

I~
@)

N
o

Avg. response (ms)
°

@)

@)

NN NI I D IS S S S S S S S S - - EEE NN . - -
——————— — -y

-o-strateg lcusers |

other users

0 1 5 10 15 20
No. of strategic users (out of 20)

33

Many users

N
@)
@)

I~
@)

N
o

Avg. response (ms)
°

@)

@)

NN NI I D IS S S S S S S S S - - EEE NN . - -
——————— — -y

-o-strateg lcusers |

other users

0 1 5 10 15 20
No. of strategic users (out of 20)

FairRide has minimal loss.

33

Facebook experiments

60

B max-min

M FairRide

Redcution in Median
Job Time (%)
w
o

1-10 11-50 51-100 101-500 501-
Bin (#Tasks)

Facebook experiments

60
B max-min

G M FairRide
S ’\'545
S 2
c O
= &30
S ic
S O
3 S
o 15
Q
o

1-10 11-50 51-100 101-500 501-
Bin (#Tasks)

FairRide outperforms max-min fairness by 29%

34

Conclusion

* No policy can satisfy all desirable properties:
— Isolation guarantee
— Strategy proofness
— Pareto efficiency

35

Conclusion

* No policy can satisfy all desirable properties:
— Isolation guarantee
— Strategy proofness
— Pareto efficiency

* FairRide:isolation guarantee and strategy-
proofness through probabilistic blocking.

— Outperforms static allocation and other sharing
policies when users cheat.

— Achieves this with least overhead

35

