
Qifan Pu,
Haoyuan Li,

Matei Zaharia,
Ali Ghodsi,
Ion Stoica

FairRide: Near-Optimal
Fair Cache Sharing

UC BERKELEY

1

Caches are crucial

2

Caches are crucial

2

Caches are crucial

2

Caches are crucial

2

3

Cache sharing

3

Cache sharing

• Increasingly, caches are shared among multiple users

3

Cache sharing

• Increasingly, caches are shared among multiple users

– Especially with the advent of cloud

3

Cache sharing

• Increasingly, caches are shared among multiple users

– Especially with the advent of cloud

… … …

Backend (storage/network)

3

Cache sharing

• Increasingly, caches are shared among multiple users

– Especially with the advent of cloud

… … …

Backend (storage/network)

3

Cache sharing

• Increasingly, caches are shared among multiple users

– Especially with the advent of cloud

Benefits:

– Provide low latency

– Reduce backend load

… … …

Backend (storage/network)

3

Cache sharing

• Increasingly, caches are shared among multiple users

– Especially with the advent of cloud

Benefits:

– Provide low latency

– Reduce backend load

*

Cache

… … …

Backend (storage/network)

Problems with cache algorithms

*

Cache

Backend (storage/network)

… … …

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…

… … …

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…

… … …

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…

… … …

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…

… … …

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…
• Cache data likely to be

accessed in the future

… … …

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…
• Cache data likely to be

accessed in the future

• Optimize global efficiency

… … …

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…
• Cache data likely to be

accessed in the future

• Optimize global efficiency

• Single user gets arbitrarily

small cache

… … …

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…
• Cache data likely to be

accessed in the future

• Optimize global efficiency

• Single user gets arbitrarily

small cache

… … …

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…
• Cache data likely to be

accessed in the future

• Optimize global efficiency

• Single user gets arbitrarily

small cache

… … …

*

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…
• Cache data likely to be

accessed in the future

• Optimize global efficiency

• Single user gets arbitrarily

small cache

• Prone to strategic behavior

… … …

*

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…
• Cache data likely to be

accessed in the future

• Optimize global efficiency

• Single user gets arbitrarily

small cache

• Prone to strategic behavior

… … …

*

4

Problems with cache algorithms

*

Cache

Backend (storage/network)

• LRU, LFU, LRU-K…
• Cache data likely to be

accessed in the future

• Optimize global efficiency

• Single user gets arbitrarily

small cache

• Prone to strategic behavior

… … …

* *

4

… … …

Statically allocated

Backend (storage/network)

Cache Cache Cache

Solution?

… … …

Statically allocated

Backend (storage/network)

Cache Cache Cache

Solution?

Isolation
Strategy-proof

6

… … …

Statically allocated

*

Globally shared

Cache

Backend (storage/network)

… … …

Backend (storage/network)

Cache Cache Cache

What we want

Isolation
Strategy-proof

6

… … …

Statically allocated

*

Globally shared

Cache

Backend (storage/network)

… … …

Backend (storage/network)

Cache Cache Cache

What we want

Isolation
Strategy-proof

Higher utilization
Share data

6

… … …

Statically allocated

*

Globally shared

Cache

Backend (storage/network)

… … …

Backend (storage/network)

Cache Cache Cache

What we want

Isolation
Strategy-proof

Higher utilization
Share data

7

Our contribution

7

Our contribution

• First analysis of cache allocation policies

 with well defined resource-sharing properties.

7

Our contribution

• First analysis of cache allocation policies

 with well defined resource-sharing properties.

• Impossibility result:

 no policy achieves all good properties!

7

Our contribution

• First analysis of cache allocation policies

 with well defined resource-sharing properties.

• Impossibility result:

 no policy achieves all good properties!

• A new policy that is near-optimal and
outperforms other policies when users cheat.

A simple model

8

• Users access equal-sized files at constant rates

– the rate user i accesses file j

A simple model

8

rij

• Users access equal-sized files at constant rates

– the rate user i accesses file j

• A allocation policy decides which files to cache

– the % of file j put in cache

A simple model

8

rij

p j

• Users access equal-sized files at constant rates

– the rate user i accesses file j

• A allocation policy decides which files to cache

– the % of file j put in cache

• Users care their hit ratio

– user i’s hit ratio:

A simple model

8

rij

p j

• Users access equal-sized files at constant rates

– the rate user i accesses file j

• A allocation policy decides which files to cache

– the % of file j put in cache

• Users care their hit ratio

– user i’s hit ratio:

A simple model

8

rij

HRi =
total _hits

total _accesses
=

p jrij
j

å

rij
j

å

p j

• Users access equal-sized files at constant rates

– the rate user i accesses file j

• A allocation policy decides which files to cache

– the % of file j put in cache

• Users care their hit ratio

– user i’s hit ratio:

A simple model

8

 Results hold with varied file sizes, access partial files, is binary, etc.

rij

HRi =
total _hits

total _accesses
=

p jrij
j

å

rij
j

å

p j

p j

• What properties do we want?

• Can we extend max-min to solve the problem?

• How do we solve it? (FairRide)

• How well does FairRide work in practice?

Outline

9

• Isolation Guarantee

– No user should be worse off than static allocation

Properties

10

• Isolation Guarantee

– No user should be worse off than static allocation

• Strategy-Proofness

– No user can improve by cheating

Properties

10

• Isolation Guarantee

– No user should be worse off than static allocation

• Strategy-Proofness

– No user can improve by cheating

• Pareto Efficiency

– Can’t improve a user without hurting others

Properties

10

Strategy proofness

11

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

Strategy proofness

11

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

… …

MySQL Instance

Site1 Site2

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

*

Amazon Elasticache

… …

MySQL Instance

Site1 Site2

0

6

12

18

0 10 20 30 40m
is

s
ra

ti
o

 (%
)

time (min)

site1

site2

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

*

Amazon Elasticache

… …

MySQL Instance

Site1 Site2

0

6

12

18

0 10 20 30 40m
is

s
ra

ti
o

 (%
)

time (min)

site1

site2

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

*

Amazon Elasticache

… …

MySQL Instance

Site1 Site2

0

6

12

18

0 10 20 30 40m
is

s
ra

ti
o

 (%
)

time (min)

site1

site2

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

*

Amazon Elasticache

… …

MySQL Instance

Site1 Site2

0

6

12

18

0 10 20 30 40m
is

s
ra

ti
o

 (%
)

time (min)

site1

site2

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

*

Amazon Elasticache

… …

MySQL Instance

Site1 Site2

0

6

12

18

0 10 20 30 40m
is

s
ra

ti
o

 (%
)

time (min)

site1

site2

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

*

Amazon Elasticache

… …

MySQL Instance

Site1 Site2

*

0

6

12

18

0 10 20 30 40m
is

s
ra

ti
o

 (%
)

time (min)

site1

site2

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

*

Amazon Elasticache

… …

MySQL Instance

Site1 Site2

*

0

6

12

18

0 10 20 30 40m
is

s
ra

ti
o

 (%
)

time (min)

site1

site2

• Very easy to cheat, hard to detect

– e.g., by making spurious accesses

• Can happen in practice

Strategy proofness

11

2x

*

Amazon Elasticache

… …

MySQL Instance

Site1 Site2

*

• Isolation Guarantee

– No user should be worse off than static allocation

• Strategy-Proofness

– No user can improve by cheating

• Pareto Efficiency

– Can’t improve a user without hurting others

Properties

12

• What properties do we want?

• Can we extend max-min fairness to solve the
problem?

• How do we solve it? (FairRide)

• How well does FairRide work in practice?

Outline

13

What is max-min fairness?

14

• Maximize the the user with minimum allocation

– Solution: allocate each 1/n (fair share)

What is max-min fairness?

14

33% 33% 33%

• Maximize the the user with minimum allocation

– Solution: allocate each 1/n (fair share)

– Handles if some users want less than fair share

What is max-min fairness?

14

33% 33% 33%

20% 40% 40%

• Maximize the the user with minimum allocation

– Solution: allocate each 1/n (fair share)

– Handles if some users want less than fair share

• Widely successful to other resources:

– OS: round robin, prop sharing, lottery sched…

– Networking: fair queueing, wfq, wf2q, csfq, drr…

– Datacenter: DRF, Hadoop fair sched, Quincy…

What is max-min fairness?

14

33% 33% 33%

20% 40% 40%

An example

15

An example

A

C

15

B

An example

A

C

Alice

Bob

15

B

An example

5 req/sec A

C 5 req/sec

Alice

Bob

15

B

An example

5 req/sec A

C 5 req/sec

Alice

Bob

file sizes = 1GB, total cache = 2GB 15

0 0.5 1 1.5 2GB

B

An example

5 req/sec A

C 5 req/sec

Alice

Bob

file sizes = 1GB, total cache = 2GB 15

0 0.5 1 1.5 2GB

B
100%

An example

5 req/sec A

C 5 req/sec

Alice

Bob

file sizes = 1GB, total cache = 2GB 15

0 0.5 1 1.5 2GB

B
B
100%

An example

5 req/sec A

C 5 req/sec

Alice

Bob

file sizes = 1GB, total cache = 2GB 15

0 0.5 1 1.5 2GB

B A
B
100%

An example

5 req/sec A

C 5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB 15

0 0.5 1 1.5 2GB

B A
B
100%

An example

5 req/sec A

C 5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB 15

0 0.5 1 1.5 2GB

50%

B A C
B
100%

An example

5 req/sec A

C 5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

15

0 0.5 1 1.5 2GB

50%

B A C
B
100%

An example

5 req/sec A

C 5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3%

15

0 0.5 1 1.5 2GB

50%

B A C
B
100%

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

max-min fairness

16

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness

16

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness

?

16

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3%

17

C

0 0.5 1 1.5 2GB

B A C
B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3%

17

C

0 0.5 1 1.5 2GB

B A C
B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3%

17

C

0 0.5 1 1.5 2GB

B A C
B

Is it possible for a strategic Bob to
get higher hit rate from the system?

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3%

17

C

0 0.5 1 1.5 2GB

B A C
B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

17

C

0 0.5 1 1.5 2GB

B A C
B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

17

100%

C

0 0.5 1 1.5 2GB

B A C
B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

17

100%

C

0 0.5 1 1.5 2GB

B A C 50%

B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

17

100%

C

0 0.5 1 1.5 2GB

B C 50% 100%

B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

17

100%

C

0 0.5 1 1.5 2GB

B C 50% 100%

B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec
 100%

17

100%

C

0 0.5 1 1.5 2GB

B C 50% 100%

B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec
 100%

17

100%

C

0 0.5 1 1.5 2GB

B C 50% 100%

B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

66.7%

 100%

17

100%

C

0 0.5 1 1.5 2GB

B C 50% 100%

B

100%

An example

5 req/sec A

5 req/sec

Alice

Bob

50%

file sizes = 1GB, total cache = 2GB

HR = 83.3%

HR = 83.3% +10 req/sec

66.7%

 100%

17

100%

C

0 0.5 1 1.5 2GB

B C 50% 100%

B

By gaming the system, a user can
increase performance by hurting others!

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness

18

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness ✗

18

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness ✗

18

static allocation ✓ ✓ ✗

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness ✗

priority allocation ✗ ✓ ✓

18

static allocation ✓ ✓ ✗

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness ✗

priority allocation

max-min rate

✗ ✓ ✓

✓ ✗ ✗

18

… … … …

static allocation ✓ ✓ ✗

No allocation policy can satisfy all
three properties!

Theorem

19

No allocation policy can satisfy all
three properties!

• Best we can do: two of three.

Theorem

19

What makes cache sharing
different?

20

What makes cache sharing
different?

20

Unlike CPU or network links:

• The cost of “switching” is high
– Cache misses go to slow storage

– Prevents efficient time multiplexing

What makes cache sharing
different?

20

Unlike CPU or network links:

• The cost of “switching” is high
– Cache misses go to slow storage

– Prevents efficient time multiplexing

• Can be shared in space
– Shared data can be accessed non-exclusively

– A CPU cycle used by only one thread

– A network link sends one packet at a time

What makes cache sharing
different?

20

Unlike CPU or network links:

• What properties do we want?

• Can we extend max-min to solve the problem?

• How do we solve it? (FairRide)

• How well does FairRide work in practice?

Outline

21

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness ✗

priority allocation

max-min rate

✗ ✓ ✓

✓ ✗ ✗

static allocation ✓ ✓ ✗

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

103

Properties

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness ✗

priority allocation

max-min rate

✗ ✓ ✓

✓ ✗ ✗

static allocation ✓ ✓ ✗

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

104

Properties

FairRide

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness ✗

priority allocation

max-min rate

✗ ✓ ✓

✓ ✗ ✗

static allocation ✓ ✓ ✗

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

105

Properties

FairRide ✓ ✓

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness ✗

priority allocation

max-min rate

✗ ✓ ✓

✓ ✗ ✗

static allocation ✓ ✓ ✗

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

106

Properties

FairRide ✓ ✓ Near-optimal

107

FairRide

108

FairRide
• Starts with max-min fairness

– Allocate 1/n to each user

– Split “cost” of shared files equally among shared users

109

FairRide
• Starts with max-min fairness

– Allocate 1/n to each user

– Split “cost” of shared files equally among shared users

• Only difference:

 blocking users who don’t “pay” from accessing

110

FairRide
• Starts with max-min fairness

– Allocate 1/n to each user

– Split “cost” of shared files equally among shared users

• Only difference:

 blocking users who don’t “pay” from accessing

• Probabilistic blocking: with some probability

111

FairRide
• Starts with max-min fairness

– Allocate 1/n to each user

– Split “cost” of shared files equally among shared users

• Only difference:

 blocking users who don’t “pay” from accessing

• Probabilistic blocking: with some probability

– Implemented with delaying

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking

A

B
100%

C
100%

24

B C
0 0.5 1 1.5 2GB

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking

A

B
100%

C
100%

24

B C
0 0.5 1 1.5 2GB

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking

A

B
100%

C
100%

24

Allow 5
Block 5

B C
0 0.5 1 1.5 2GB

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking

A

B
100%

C
100%

 66.7%
24

Allow 5
Block 5

B C
0 0.5 1 1.5 2GB

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking

A

B
100%

C
100%

 66.7%
24

Allow 5
Block 5

B C
0 0.5 1 1.5 2GB

5 req/sec

Alice

Bob
HR = 83.3% +10 req/sec

100%

FairRide: Blocking

A

B
100%

C
100%

 66.7%
24

Allow 5
Block 5

B C
0 0.5 1 1.5 2GB
Cheating always gives worst performance.

Dis-incentive strategic behaviors.

Probabilistic blocking

25

Probabilistic blocking
• FairRide blocks a user with p(nj) = 1/(nj+1) probability

– nj is number of other users caching file j

– e.g., p(1)=50%, p(4)=20%

25

Probabilistic blocking
• FairRide blocks a user with p(nj) = 1/(nj+1) probability

– nj is number of other users caching file j

– e.g., p(1)=50%, p(4)=20%

• The best you can do in a general case

25

Probabilistic blocking
• FairRide blocks a user with p(nj) = 1/(nj+1) probability

– nj is number of other users caching file j

– e.g., p(1)=50%, p(4)=20%

• The best you can do in a general case

– Less blocking does not prevent cheating

25

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

✓ ✓ max-min fairness ✗

priority allocation

max-min rate

✗ ✓ ✓

✓ ✗ ✗

static allocation ✓ ✓ ✗

Isolation
Guarantee

Strategy
Proofness

Pareto
Efficiency

122

Properties

FairRide ✓ ✓ Near-optimal

Strategy-
proofness

Pareto-
efficiency

vs.

27

• More efficient when user cheats
– Minimal impact on efficiency when no user cheats

Strategy-
proofness

Pareto-
efficiency

vs.

27

• More efficient when user cheats
– Minimal impact on efficiency when no user cheats

• Cost of cheating vs. cost of blocking/delaying

Strategy-
proofness

Pareto-
efficiency

vs.

27

• More efficient when user cheats
– Minimal impact on efficiency when no user cheats

• Cost of cheating vs. cost of blocking/delaying
– The latter is small insurance for the former

Strategy-
proofness

Pareto-
efficiency

vs.

27

• More efficient when user cheats
– Minimal impact on efficiency when no user cheats

• Cost of cheating vs. cost of blocking/delaying
– The latter is small insurance for the former

• Strategy-proofness makes the system stable

Strategy-
proofness

Pareto-
efficiency

vs.

27

• What properties do we want?

• Can we extend max-min to solve the problem?

• How do we solve it? (FairRide)

• How well does FairRide work in practice?

Outline

28

• Implemented in Alluxio (formerly Tachyon)

• FairRide: delay a request as if blocked

• Compared with max-min fairness.

• Benchmarked with TPC-H, YCSB, Facebook
workloads.

Evaluation

29

• Does FairRide prevent cheating?

• What is the cost of FairRide?

• How does it perform end-to-end?

Evaluation

30

Cheating under Max-min fairness

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
ra

ti
o

 (
%

)

Time (s)

user 1

user 2

31

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

Cheating under Max-min fairness

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
ra

ti
o

 (
%

)

Time (s)

user 1

user 2

31

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

Cheating under Max-min fairness

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
ra

ti
o

 (
%

)

Time (s)

user 1

user 2

user 2 cheats

31

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

Cheating under Max-min fairness

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
ra

ti
o

 (
%

)

Time (s)

user 1

user 2

user 2 cheats

31

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

Cheating under Max-min fairness

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
ra

ti
o

 (
%

)

Time (s)

user 1

user 2

user 2 cheats

user 1 cheats

31

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

Cheating under Max-min fairness

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
ra

ti
o

 (
%

)

Time (s)

user 1

user 2

user 2 cheats

user 1 cheats

31

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

Cheating under Max-min fairness

Cheating can greatly hurt user performance.

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
ra

ti
o

 (
%

)

Time (s)

user 1

user 2

user 2 cheats

user 1 cheats

31

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
 r

a
ti
o

 (
%

)

Time (s)

user 1

user 2

Cheating under FairRide

32

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
 r

a
ti
o

 (
%

)

Time (s)

user 1

user 2

Cheating under FairRide

32

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
 r

a
ti
o

 (
%

)

Time (s)

user 1

user 2

Cheating under FairRide

user 2 cheats

32

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
 r

a
ti
o

 (
%

)

Time (s)

user 1

user 2

Cheating under FairRide

user 2 cheats

32

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
 r

a
ti
o

 (
%

)

Time (s)

user 1

user 2

Cheating under FairRide

user 2 cheats

user 1 cheats

32

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

0

15

30

45

60

0 150 300 450 600 750 900 1050

m
is

s
 r

a
ti
o

 (
%

)

Time (s)

user 1

user 2

Cheating under FairRide

user 2 cheats

user 1 cheats

32

FairRide dis-incentives users from cheating.

400

300

200

100

0 A
vg

. r
es

p
o

n
se

 (m
s)

Many users

33

0

30

60

90

0 1 5 10 15 20

A
vg

. m
is

s
ra

ti
o

 (
%

)

No. of strategic users (out of 20)

strategic users

other users

600

400

200

0

 A
vg

. r
es

p
o

n
se

 (m
s)

493

333

Many users

33

0

30

60

90

0 1 5 10 15 20

A
vg

. m
is

s
ra

ti
o

 (
%

)

No. of strategic users (out of 20)

strategic users

other users

600

400

200

0

 A
vg

. r
es

p
o

n
se

 (m
s)

493

333
FairRide: 351ms

Many users

33

0

30

60

90

0 1 5 10 15 20

A
vg

. m
is

s
ra

ti
o

 (
%

)

No. of strategic users (out of 20)

strategic users

other users

600

400

200

0

 A
vg

. r
es

p
o

n
se

 (m
s)

493

333
FairRide: 351ms

Many users

33

0

30

60

90

0 1 5 10 15 20

A
vg

. m
is

s
ra

ti
o

 (
%

)

No. of strategic users (out of 20)

strategic users

other users

600

400

200

0

 A
vg

. r
es

p
o

n
se

 (m
s)

493

333
FairRide: 351ms

FairRide has minimal loss.

Facebook experiments

34

0

15

30

45

60

1-10 11-50 51-100 101-500 501-

R
ed

cu
ti

o
n

 in
 M

ed
ia

n

Jo
b

 T
im

e
(%

)

Bin (#Tasks)

max-min
FairRide

Facebook experiments

FairRide outperforms max-min fairness by 29%

34

0

15

30

45

60

1-10 11-50 51-100 101-500 501-

R
ed

cu
ti

o
n

 in
 M

ed
ia

n

Jo
b

 T
im

e
(%

)

Bin (#Tasks)

max-min
FairRide

• No policy can satisfy all desirable properties:

– Isolation guarantee

– Strategy proofness

– Pareto efficiency

Conclusion

35

• No policy can satisfy all desirable properties:

– Isolation guarantee

– Strategy proofness

– Pareto efficiency

• FairRide:isolation guarantee and strategy-
proofness through probabilistic blocking.

– Outperforms static allocation and other sharing
policies when users cheat.

– Achieves this with least overhead

Conclusion

35

