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Cheating always gives worst performance. 

Dis-incentive strategic behaviors. 
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Probabilistic blocking 
• FairRide blocks a user with p(nj) = 1/(nj+1) probability 

– nj is number of other users caching file j 

– e.g., p(1)=50%, p(4)=20% 

 

• The best you can do in a general case 

– Less blocking does not prevent cheating 
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Isolation 
Guarantee 

Strategy 
Proofness 

Pareto 
Efficiency 

✓ ✓ max-min fairness  ✗ 

priority allocation 

max-min rate 

✗ ✓ ✓ 

✓ ✗ ✗ 

static allocation ✓ ✓ ✗ 

Isolation 
Guarantee 

Strategy 
Proofness 

Pareto 
Efficiency 

122 

Properties 

FairRide ✓ ✓ Near-optimal 
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• More efficient when user cheats 
– Minimal impact on efficiency when no user cheats 
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• More efficient when user cheats 
– Minimal impact on efficiency when no user cheats 
 

• Cost of cheating vs. cost of blocking/delaying 
– The latter is small insurance for the former 
 

• Strategy-proofness makes the system stable 
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• What properties do we want? 
 

• Can we extend max-min to solve the problem? 
 

• How do we solve it? (FairRide) 
 

• How well does FairRide work in practice? 

Outline 
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• Implemented in Alluxio (formerly Tachyon) 

 

• FairRide: delay a request as if blocked 

• Compared with max-min fairness. 

 

• Benchmarked with TPC-H, YCSB, Facebook 
workloads. 

Evaluation 
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• Does FairRide prevent cheating? 

 

• What is the cost of FairRide? 

 

• How does it perform end-to-end? 

Evaluation 

30 
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Cheating under Max-min fairness 

Cheating can greatly hurt user performance. 
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FairRide has minimal loss. 
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Facebook experiments 

FairRide outperforms max-min fairness by 29% 

34 

0

15

30

45

60

1-10 11-50 51-100 101-500 501-

R
ed

cu
ti

o
n

 in
 M

ed
ia

n
 

Jo
b

 T
im

e 
(%

) 

Bin (#Tasks) 

max-min
FairRide



• No policy can satisfy all desirable properties: 

– Isolation guarantee 

– Strategy proofness 

– Pareto efficiency 
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• No policy can satisfy all desirable properties: 

– Isolation guarantee 

– Strategy proofness 

– Pareto efficiency 

• FairRide:isolation guarantee and strategy-
proofness through probabilistic blocking. 

– Outperforms static allocation and other sharing 
policies when users cheat. 

– Achieves this with least overhead 

 

Conclusion 
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