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A new transaction got reflected in the output within 3s
The system processed up to 50 million events/s
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/High complexity

48 stages
18 joins of 5 different types
\21.3 TB in-memory state

~

Massive scalability
Reads 61TB + Write 61TB
7 billions of input events
6 billions of output events
3000+ long-running tasks Y

Fault tolerance
Handles both planned failures and
unplanned outages automatically
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Streaming dataflow

/

Streaming events

’ Input streams

S
Ch\%ﬁci%%}/vf

Output streams a




Input streams

Streaming dataflow

Replay of

upstream events

Rebuild the state —

Vertices

Missing or /
duplicate events [ M }

Output streams



Decoupling

g rStream
Provides the illusion of reliable
and asynchronous
communication channels
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rStream
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* Properties

* There is a unique value associated with each sequence number
* A read returns only after a successful write, for the same seq

* If a write of (seq, e) succeeds, then for the following reads that
reach position seq, they eventually return (seq,e)



Execution of a vertex
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Snapshot

« Sequence numbers of its input streams

« Sequence numbers of its output streams
« Computation state
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Failure recovery
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Optimization

* Naive implementation of rStream: writing events to reliable store
* Synchronous writes introduce significant latencies

* Uses a hybrid scheme that moves writes out of the critical path
while providing the illusion of reliable channels

1. Buffered in memory J

Old GC Reliable Volatile . New

{2. Asynchronously TU

flushed to reliable store when requested

3. If lost, recompute J




Different failure recovery strategies

* Recomputation using dependency tracking at runtime
* Checkpoint/log replay
* Persistent state/streams

* Hybrid



Development/debugging

* Greatly leveraged and tightly integrated with existing system

* Integrated language, optimizer, scheduling, etc.

* Distributed streaming made easy

» Offline mode: starting with finite inputs with minimum resources to
validate/debug a streaming application

* Later switched to on-line, live execution transparently

 Greatly improves developer productivity in lifecycle of an application
 E.g., Can even debug/profile a vertex without impacting the running job



Deployment

* Re-examination of segments of execution in the past for auditing
 Dynamic scaling and robustness to load fluctuation
» Continuous operation during system maintenance

» Straggler handling

 Dynamic reconfiguration/patching to resolve data anomalies
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Conclusion

* Cloud-scale stream computation is challenging due to the
complexity of dependencies

» StreamScope introduces two new abstractions, rVertex and
rStream, to manage the complexity through cfecouplmg

* The abstractions separate system properties from the actual
implementation to,
 Enable powerful optimizations
* Develop different failure recovery strategies
* Better support the lifecycle of streaming applications in production



