StreamScope:
Continuous Reliable Distributed Processing
of Big Data Streams

Wei Lin", Haochuan Fan”, Zhengping Qian (ZP)", Junwei Xu, Sen Yang,
Jingren Zhou®, Lidong Zhou

Microsoft
*Now with Alibaba Group

@NSDI'16

35— ‘Bﬁ!ﬁlﬂﬂﬁ!

ummm

Mwwmﬂ-
20,428,318, 110

= - 908 ERRTSL:T4
,-- = s 3'21 1 in USD o 1”0353 Mobile GMV S are
eliminary and unaudited
; ™ W R 1F s@iit. All datc 1 are preli ary and unau
3 *meA A / /,-L_’//X \ e
- = A .
. AR 4 // ‘
--,,r L 5 .[' -
& Overseas Merchant Flagship Stores and Top Markets Selling
SURERRS . f Wrsmaes | BOBE(SER)NE
EORERSN HORRRRE y . =
- % '
. ‘m“ . n - - :-J :
o pesen] O Jr—
: MuscletechWLARE : - COSTCOMSHRRE
| OlorARSNEN ﬁll" thejamySSOS/HRIRGE
. azwanpe \ MatsumotoKiYoshiHIIE
. MsshaBRBEBE = ‘ 23 : REWHWHMRE
' 193 4+ .
.) . -
of Countnes/Regons with
AR Compieted Transactons m.m-‘

A new transaction got reflected in the output within 3s
The system processed up to 50 million events/s

61,336,252,895,109
249,538,700,649

60,124,233,285,838
2,876

35

View | Stage Timing View = Vertex RunTime Stats by Stage | Metrics | State History

(#,) Display: Progress ¥ 1 Succeeded M Failed M Running Waiting

/High complexity

48 stages
18 joins of 5 different types
\21.3 TB in-memory state

~

Massive scalability
Reads 61TB + Write 61TB
7 billions of input events
6 billions of output events
3000+ long-running tasks Y

Fault tolerance
Handles both planned failures and
unplanned outages automatically

{ Play O

Streaming dataflow

/

Streaming events

’ Input streams

S
Ch\%ﬁci%%}/vf

Output streams a

Input streams

Streaming dataflow

Replay of

upstream events

Rebuild the state —

Vertices

Missing or /
duplicate events [M }

Output streams

Decoupling

g rStream
Provides the illusion of reliable
and asynchronous
communication channels

o

Output streams

Input streams

rStream

+—X
4—

old < <> New
* Properties

* There is a unique value associated with each sequence number
* A read returns only after a successful write, for the same seq

* If a write of (seq, e) succeeds, then for the following reads that
reach position seq, they eventually return (seq,e)

Execution of a vertex

)

3,4,5,6,7

a

sy =<{2}, {1}, 1>

—

Snapshot

« Sequence numbers of its input streams

« Sequence numbers of its output streams
« Computation state

\

/

rVertex

)

e

Timeline

1,2,3,4

3,4,5,6,7

4,5,6,7

56,7
<ooo() 5 <o)

sy =<{2}, {1}, 1> s, = <{3}, {2}, t,> s3 = <{4}, {4}, 13>

\ jsfcrf from a snapshot

Failure recovery

))

Timeline

3,4,5,6,7
4,5,6,7
56,7

|
U/

{4}, t3>

)
>><
—
)
>.>.<
N
—
)
><
x5

1
1,2
1,2,3,4

sy =<{2}, {1}, 1> s, = <{3}, {2}, t,> s3 = <{4},

‘N-l

Optimization

* Naive implementation of rStream: writing events to reliable store
* Synchronous writes introduce significant latencies

* Uses a hybrid scheme that moves writes out of the critical path
while providing the illusion of reliable channels

1. Buffered in memory J

Old GC Reliable Volatile . New

{2. Asynchronously TU

flushed to reliable store when requested

3. If lost, recompute J

Different failure recovery strategies

* Recomputation using dependency tracking at runtime
* Checkpoint/log replay
* Persistent state/streams

* Hybrid

Development/debugging

* Greatly leveraged and tightly integrated with existing system

* Integrated language, optimizer, scheduling, etc.

* Distributed streaming made easy

» Offline mode: starting with finite inputs with minimum resources to
validate/debug a streaming application

* Later switched to on-line, live execution transparently

 Greatly improves developer productivity in lifecycle of an application
 E.g., Can even debug/profile a vertex without impacting the running job

Deployment

* Re-examination of segments of execution in the past for auditing
 Dynamic scaling and robustness to load fluctuation
» Continuous operation during system maintenance

» Straggler handling

 Dynamic reconfiguration/patching to resolve data anomalies

Server maintenance # Failures Latency (minute)

100
80
60
40
20

120
90

60
30

800
600
400
200

Metrics

State History

Waiting

Time (week)

Conclusion

* Cloud-scale stream computation is challenging due to the
complexity of dependencies

» StreamScope introduces two new abstractions, rVertex and
rStream, to manage the complexity through cfecouplmg

* The abstractions separate system properties from the actual
implementation to,
 Enable powerful optimizations
* Develop different failure recovery strategies
* Better support the lifecycle of streaming applications in production

