
StreamScope:
Continuous Reliable Distributed Processing

of Big Data Streams

Wei Lin*, Haochuan Fan*, Zhengping Qian (ZP)*, Junwei Xu, Sen Yang,
Jingren Zhou*, Lidong Zhou

Microsoft
*Now with Alibaba Group

@NSDI’16

A new transaction got reflected in the output within 3s
The system processed up to 50 million events/s

High complexity
48 stages
18 joins of 5 different types
21.3 TB in-memory state

Fault tolerance
Handles both planned failures and
unplanned outages automatically

Massive scalability
Reads 61TB + Write 61TB
7 billions of input events
6 billions of output events
3000+ long-running tasks

Streaming dataflow
Input streams

R R

X X X

M

Output streams

Channels
Vertices

Streaming events

Streaming dataflow
Input streams

R R

X X X

M

Output streams

Vertices

Missing or
duplicate events

Replay of
upstream events

Rebuild the state

Decoupling
Input streams

R R

X X X

M

Output streams

Vertices

rStream
Provides the illusion of reliable

and asynchronous
communication channels

rStream

• Properties
• There is a unique value associated with each sequence number
• A read returns only after a successful write, for the same seq
• If a write of (seq,e) succeeds, then for the following reads that

reach position seq, they eventually return (seq,e)

R1

W1

Old New

W2

R2 R3

Execution of a vertex

X: t1

1
3,

4,
5,

6,
7

s1 = <{2}, {1}, t1>

Snapshot
• Sequence numbers of its input streams
• Sequence numbers of its output streams
• Computation state

rVertex

X: t1

1
3,

4,
5,

6,
7

s1 = <{2}, {1}, t1>

X: t2

1,
2

3,
4,

5,
6,

7

s2 = <{3}, {2}, t2>

X: t3

1,
2,

3,
4

5,
6,

7

s3 = <{4}, {4}, t3>

Timeline

Restart from a snapshot

Failure recovery

X: t1

1
3,

4,
5,

6,
7

s1 = <{2}, {1}, t1>

X: t2

1,
2

3,
4,

5,
6,

7

s2 = <{3}, {2}, t2>

X: t3

1,
2,

3,
4

5,
6,

7

s3 = <{4}, {4}, t3>

Timeline

Optimization

• Naïve implementation of rStream: writing events to reliable store
• Synchronous writes introduce significant latencies

• Uses a hybrid scheme that moves writes out of the critical path
while providing the illusion of reliable channels

Reliable VolatileGCOld New

1. Buffered in memory

2. Asynchronously
flushed to reliable store

3. If lost, recompute
when requested

Different failure recovery strategies

• Recomputation using dependency tracking at runtime
• Checkpoint/log replay
• Persistent state/streams
• Hybrid

Development/debugging

• Greatly leveraged and tightly integrated with existing system
• Integrated language, optimizer, scheduling, etc.

• Distributed streaming made easy
• Off-line mode: starting with finite inputs with minimum resources to

validate/debug a streaming application
• Later switched to on-line, live execution transparently
• Greatly improves developer productivity in lifecycle of an application

• E.g., Can even debug/profile a vertex without impacting the running job

Deployment

• Re-examination of segments of execution in the past for auditing

• Dynamic scaling and robustness to load fluctuation

• Continuous operation during system maintenance

• Straggler handling

• Dynamic reconfiguration/patching to resolve data anomalies

Se

rv
er

 m
ai

nt
en

an
ce

 #
 F

ai
lu

re
s

La
te

nc
y

(m
in

ut
e)

Conclusion
• Cloud-scale stream computation is challenging due to the

complexity of dependencies

• StreamScope introduces two new abstractions, rVertex and
rStream, to manage the complexity through decoupling

• The abstractions separate system properties from the actual
implementation to,
• Enable powerful optimizations
• Develop different failure recovery strategies
• Better support the lifecycle of streaming applications in production

