Embark: Securely Outsourcing Middleboxes to the Cloud

Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, Zhi Liu

UC Berkeley
Tsinghua University
Middleboxes are prevalent and problematic

- Number of Middleboxes ≈ Number of Routers (APLOMB [SIGCOMM ‘12])
- Lots of Problems:
 - MB Manifesto [HotNets ‘11], CoMb [NSDI ‘12],
 - Honda et al. [IMC ’11], DOA [OSDI ‘04], ETTM [NSDI ’11], ...

A Promising Solution: Outsourcing

- APLOMB [SIGCOMM ‘12]
- Aryaka, Zscaler
- AT&T NFV/CORD
New Challenge: Confidentiality and Privacy

➢ The middleboxes sees the traffic unencrypted.

➢ Strawman: End-to-end Encryption (e.g. TLS):
 ■ Some middleboxes cannot process traffic (e.g. Deep Packet Inspection).
 ■ Unencrypted packet fields still leak information
Even with end-to-end encryption, Cloud can still infer the user profile.
Problem Statement

Can we outsource middleboxes without compromising privacy?

Embark

the first system that allows middlebox outsourcing, while keeping traffic confidential.
Overview

➢ Approach

■ Middleboxes process encrypted traffic without decrypting it

➢ Crypto Primitives

■ KeywordMatch: For Signature Matching

■ BlindBox [SIGCOMM ‘15]: Prohibitive Setup Time Per Flow

Contribution: System Design + Implementation without Per-flow Setup Time

■ PrefixMatch: Prefix/Range Matching

Contribution: A fast, secure encryption scheme for prefix matching
Overview

➢ Approach
 ■ Middleboxes process encrypted traffic without decrypting it

➢ Crypto Primitives
 ■ **KeywordMatch**: For Signature Matching
 ■ BlindBox [SIGCOMM ‘15]: Prohibitive Setup Time Per Flow
 Contribution: System Design + Implementation without Per-flow Setup Time
 ■ **PrefixMatch**: Prefix/Range Matching
 Contribution: A fast, secure encryption scheme for prefix matching
Outline

1. Service Model of Embark

2. PrefixMatch: Two Functions
 - EncryptRanges
 - EncryptValue

3. Evaluation

4. Conclusion
Service Model
Service Model

Gateway

Encrypt / Decrypt traffic to/from the cloud

Cloud

Enterprise
Service Model

Middlebox Rules

IP firewall rules, IDS signatures, etc.

Enterprise

Cloud
Initialization

Enterprise encrypt rules using *EncryptRanges*.
Initialization

Enterprise

Middleboxes deploy encrypted rules.
Packet Flow

1. Outgoing traffic are sent to Gateway.
2. Encrypt the traffic

- Encrypt packet headers *field by field* using *EncryptValue*
- Encrypt payloads using stream cipher

Implication: no change to packet structure
Packet Flow

3. Forward to Cloud
Packet Flow

4. Middleboxes process encrypted traffic.

No change to algorithms: E.g., LPM, multi-dimensional classifiers, etc.
Packet Flow

5. Back to Gateway

Cloud

Enterprise
Packet Flow

6. Decrypt and Forward

Enterprise

Cloud

Internet
Outline

1. Service Model of Embark

2. PrefixMatch: Two Functions
 - EncryptRanges
 - EncryptValue

3. Evaluation

4. Conclusion
PrefixMatch

➢ Property
 ■ Answer if a value V matches a range R_i from $[R_1, R_2, ...]$

➢ Security
 ■ Do not reveal the value of V and R_i
 ■ If both V_1 and V_2 match R_i, do not reveal the ordering between V_1 and V_2
PrefixMatch vs. OPE

➢ **Order-preserving Encryption**
 ■ Preserve the ordering of values after encryption

➢ **PrefixMatch is better than OPE in this scenario**
 ■ More secure (No relative ordering)
 ■ Faster (10000x)
 ■ Compare with the state-of-the-art OPE schemes (BCLO and mOPE)

<table>
<thead>
<tr>
<th>Operation</th>
<th>BCLO</th>
<th>mOPE</th>
<th>PrefixMatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypt, 10K rules</td>
<td>9333 us</td>
<td>6640 us</td>
<td>0.53 us</td>
</tr>
<tr>
<td>Encrypt, 100K rules</td>
<td>9333 us</td>
<td>8300 us</td>
<td>0.77 us</td>
</tr>
<tr>
<td>Decrypt</td>
<td>169 us</td>
<td>0.128 us</td>
<td>0.128 us</td>
</tr>
</tbody>
</table>
EncryptRanges

➢ Firewall Rules

- Block from 192.168.1.0/24 to 205.203.224.0/19
- Block from 192.168.0.0/16 to 223.254.0.0/16
- Block from 10.1.0.0/16 to 223.201.0.0/16
Assign Random Prefixes
EncryptRanges

192.168.1.0/24 -> 3.0.0.0/8
192.168.0.0/16 -> 3.0.0.0/8
162.0.0.0/8
10.1.0.0/16 -> 62.0.0.0/8
EncryptRanges

Source IP
- 192.168.1.0/24 -> 3.0.0.0/8
- 192.168.0.0/16 -> 3.0.0.0/8
- 10.1.0.0/16 -> 62.0.0.0/8

Destination IP
- 205.203.224.0/19 -> 12.0.0.0/8
- 223.254.0.0/16 -> 241.0.0.0/8
- 223.201.0.0/16 -> 163.0.0.0/8
Encrypt each field independently

- Source IP, Destination IP,
- Source Port, Destination Port...
EncryptValue

- Encrypt each field independently
 - Source IP, Destination IP,
 - Source Port, Destination Port...

10.1.0.0/16
62.0.0.0/8
192.168.0.0/16
192.168.1.0/24
3.0.0.0/8
162.0.0.0/8
EncryptValue

Src IP = 10.1.1.1

10.1.0.0/16

192.168.0.0/16

192.168.1.0/24

192.168.0.0/16

62.0.0.0/8

3.0.0.0/8

162.0.0.0/8

0.0.0.0

255.255.255.255
Src IP = 10.1.123.123
Enc (Src IP) = 62.0.0.0 + Rand(0, 2^{24})
Problem 1: How to support NAT and Load Balancers?

- **Deterministic**: The value from the same flow will be mapped to the same value
- **Injective**: Values from different flows will be mapped to different values
- **Sufficient condition**

Sufficient condition:

Let

\[v = (sip, dip, sp, dp, proto) \]
\[v' = (sip', dip', sp', dp', proto') \]

\[v = v' \text{ if and only if } \]
\[Enc(v) = Enc(v') \]

Example:

\[\text{Src IP} = 10.1.123.123 \]
\[\text{Enc (Src IP)} = 62.0.0.0 + \text{Rand}(0, 2^{24}) \]
Problem 1: How to support NAT and Load Balancers?

- Use pseudorandom function, seeded by 5-tuple
- Use IPv6 to avoid collisions

\[
\begin{align*}
\text{Src IP} &= 10.1.123.123 \\
\text{Enc (Src IP)} &= 62.0.0.0 + \text{Rand}(0, 2^{24}) \\
\text{Src IP} &= ::FFFF:10.1.123.123 \\
\text{Enc (Src IP)} &= 3e00::/8 + \text{PRF(Src IP)}
\end{align*}
\]
Problem 1: How to support NAT and Load Balancers?

Problem 2: How to decrypt?

- Store AES(Src IP) in IP Options
- Decrypt AES(Src IP)
Outline

1. Service Model of Embark
2. PrefixMatch: Two Functions
 - EncryptRanges
 - EncryptValue
3. Evaluation
4. Conclusion
Evaluation

➢ What kinds of middleboxes does Embark support?
 ■ Performance of each type of middleboxes

➢ How much does PrefixMatch increase the number of rules?

➢ Microbenchmarks
 ■ How does PrefixMatch compare with OPE?
 ■ How well does PrefixMatch scale with the number of rules?

➢ Performance
 ■ How fast is the gateway (with PrefixMatch and with KeywordMatch)
 ■ How much does the service model increase the page load time?
Supported Middleboxes

<table>
<thead>
<tr>
<th>Supported Middleboxes</th>
<th>Implementation</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Firewall</td>
<td>Linux iptables</td>
<td></td>
</tr>
<tr>
<td>NAT</td>
<td>Linux iptables</td>
<td></td>
</tr>
<tr>
<td>L3 Load Balancer</td>
<td>ECMP</td>
<td></td>
</tr>
<tr>
<td>L4 Load Balancer</td>
<td>HAProxy</td>
<td></td>
</tr>
<tr>
<td>HTTP Proxy</td>
<td>Embark vs Squid</td>
<td></td>
</tr>
<tr>
<td>Parental Filter</td>
<td>Embark vs Squid</td>
<td></td>
</tr>
<tr>
<td>Intrusion Detection</td>
<td>Embark vs Snort</td>
<td></td>
</tr>
<tr>
<td>(excluding scripts and other statistical techniques)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PrefixMatch

KeywordMatch
How much does PrefixMatch increase Firewall rules?

➢ Upper bound
 ■ $O(n^d)$, d is the number of fields

➢ Empirically
 ■ Rulesets
 ■ 3 firewall rulesets from campus network at UC Berkeley
 ■ 1 firewall ruleset from Emerging Threats
 ■ Result
 ■ UCB rulesets: No increase
 ■ Emerging Threats: from 1363 to 1370
 ■ Intuition
 ■ Most firewall rules don’t overlap
How fast is the gateway (without KeywordMatch)?

With **KeywordMatch** enabled:

- **240 Mbps per core**
 (Pkt size: 1400 B)

Performance with 1k rules:
- **1.2 Gbps** (min-size)
- Line rate (other cases)
See the paper for ...

- How we design and implement middleboxes
- Formal proof of sufficient conditions for NAT and L3/TCP Load Balancers
- Limitations
- More in-depth evaluation
- ...
Conclusion

Middleboxes can be outsourced in a way that still keeps the traffic confidential with Embark.

Paper: changlan.org/papers/embark.pdf

Contact: clan@eecs.berkeley.edu

Thanks!